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IN THE UNITED STATES DISTRICT COURT 
FOR THE EASTERN DISTRICT OF NORTH CAROLINA 

SOUTHERN DIVISION 
No. 7:23-CV-897 

 
IN RE: 
 
CAMP LEJEUNE WATER LITIGATION 
 
This Document Relates To: 
ALL CASES 

) 
) 
) 
) 
) 
) 

 
UNITED STATES’ MEMORANDUM IN 
OPPOSITION TO PLG’S MOTION FOR 

AN ORDER EXCLUDING CERTAIN 
OPINIONS OF ALEXANDROS 

SPILIOTOPOULOS, PH.D. 

INTRODUCTION 

Dr. Alexandros Spiliotopoulos is a senior hydrogeologist and water modeling expert at 

S.S. Papadopulos & Associates, a well-known environmental consulting firm that has played an 

instrumental role in developing techniques for using computer models to evaluate groundwater 

contamination. The United States retained Dr. Spiliotopoulos to evaluate water models that were 

developed by the Agency for Toxic Substances and Disease Registry (“ATSDR”) to support its 

epidemiological studies related to Marine Corps Base Camp Lejeune (“Camp Lejeune”). These 

models purportedly estimated mean monthly concentrations of contaminants in three water 

distribution systems at Camp Lejeune. As part of this effort, ATSDR simulated decades of 

historical groundwater qualities from the 1950s to 1980s based on a small number of samples 

taken after 1982. Based on his evaluation, Dr. Spiliotopoulos opines that ATSDR lacked 

sufficient data to reconstruct estimated monthly concentration levels at the level of detail 

presented in its analysis, and that ATSDR’s water models are uncertain and biased-high. 

Plaintiffs’ Leadership Group (“PLG”) asks this Court to exclude eight broad categories of 

opinions held by Dr. Spiliotopoulos in the Water Contamination Phase of this litigation. See 

generally Pls.’ Mot., D.E. 376. PLG’s arguments in support of excluding Dr. Spiliotopoulos’s 

opinions are illogical and misleading. Further, PLG argues that Dr. Spiliotopoulos’s opinions are 
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unreliable, but PLG misapplies the standards that courts have used to determine admissibility 

under Federal Rule of Evidence 702. Therefore, PLG’s Motion must be denied. 

NATURE OF THE CASE 

Plaintiffs have filed actions for personal injury and wrongful death related to exposure to 

contaminated water pursuant to the Camp Lejeune Justice Act of 2022, Pub. L. No. 117–168, 

§ 804, 136 Stat. 1759, 1802–04 (2022). 

STATEMENT OF FACTS 

 Dr. Spiliotopoulos is a Doctor of Civil and Environmental Engineering, with over twenty 

years of relevant experience in groundwater modeling and evaluating the fate and transport of 

contaminants in the environment. See Spiliotopoulos Rep., D.E. 377-3 at 10, 134–39. He has 

worked with various public and private sector clients to perform groundwater modeling and 

evaluate the fate and transport of contaminants, including at National Priorities List sites like the 

Hanford, Washington nuclear plant. Id. Dr. Spiliotopoulos is published and has presented at 

multiple conferences across the country. Id. Through their experts, PLG has advocated for the 

wholesale adoption of ATSDR’s water modeling to determine the absolute concentrations of 

contaminants that individuals at Camp Lejeune were exposed to between 1953 and 1987.1 In 

response to PLG’s expert reports, Dr. Spiliotopoulos independently evaluated and offered 

opinions regarding the water modeling efforts carried out by ATSDR. See generally id.  

 Dr. Spiliotopoulos opines, inter alia, that (1) ATSDR lacked sufficient data to reconstruct 

historical concentrations of contaminants at the level of detail presented in its analyses; (2) 

 
1 The United States has filed a Motion in Limine to Exclude Plaintiffs’ Phase I Expert Testimony in Support of 
Using ATSDR’s Water Models to Determine Exposure Levels for Individual Plaintiffs. D.E. 367. In that motion, the 
United States argues that ATSDR’s models were not intended to determine exposure levels for individuals. 
Accordingly, the models are not reliable under Rule 702 for determining individuals’ exposure levels in this 
litigation. See generally id.  
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ATSDR’s groundwater models were constructed using model inputs that were both incorrect and 

unrepresentative of the real-world conditions at Camp Lejeune; and (3) ATSDR’s groundwater 

models produced biased-high estimates of monthly contaminant concentrations. See id. at 3–4. 

Dr. Spiliotopoulos’s opinions are consistent with contemporary reviewers of ATSDR’s water 

models, including those from the Department of the Navy (“Navy”) and the National Research 

Council (“NRC”). 

PLG asks this Court for an Order to exclude eight broad categories of opinions from Dr. 

Spiliotopoulos: 

(1) opinions on ATSDR’s intent and purpose with respect to conducting its water modeling; 

(2) opinions from a section of his report titled “Timeline and Scientific Discourse on 

ATSDR’s Camp Lejeune Water Modeling”; 

(3) opinions on how ATSDR’s modeling results can or should be used by epidemiologists, 

doctors, or public health professionals; 

(4) opinions that ATSDR’s modeling approaches were “cutting-edge” or still in the research 

stages; 

(5) opinions regarding ATSDR’s uncertainty and sensitivity analyses; 

(6) opinions regarding the loss of contaminants from drinking water during the water 

treatment process; 

(7) opinions on the timing of the release of perchloroethylene (“PCE”) into the environment 

at Tarawa Terrace; and 

(8) opinions on water quality data collected from water supply well HP-634. 

Pls.’ Mem., D.E. 377, at 1–2. 
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LEGAL STANDARD 

 Fed. R. Evid. 702 seeks to ensure that expert witness testimony evidence is reliable and 

relevant. Daubert v. Merrell Dow Pharms., Inc., 509 U.S. 579, 589 (1993) [hereinafter Daubert]. 

The focus of the inquiry under Fed. R. Evid. 702 “must be solely on principles and methodology, 

not on the conclusions that they generate.” In re Lipitor (Atorvastatin Calcium) Mktg., Sales 

Pracs. & Prods. Liab. Litig. (No II) MDL 2502, 892 F.3d 624, 631 (4th Cir. 2018) (quoting 

Daubert, 509 U.S. at 595). Moreover, “the court should not resolve contested factual issues at the 

admissibility stage.” Mountain Valley Pipeline, LLC v. 0.32 Acres of Land, 127 F.4th 427, 435 

(4th Cir. 2025). 

ARGUMENT 

PLG argues that Dr. Spiliotopoulos’s opinions are not supported by sufficient facts or 

data, that he failed to apply a reliable methodology in rendering his opinions, and that his 

“opinions critiquing ATSDR’s methodology fail all of the Daubert factors.” Pls.’ Mem., D.E. 

377, at 8 (citing Daubert v. Merrell Dow Pharms., Inc., 43 F.3d 1311, 1318–19 (9th Cir. 1995) 

[hereinafter Daubert II]). However, beyond these conclusory statements, PLG fails to 

demonstrate how any of Dr. Spiliotopoulos’s opinions are unreliable under Fed. R. Evid. 702 and 

Daubert. PLG also repeatedly misstates the record and identifies several areas of factual dispute 

between the Parties’ Water Contamination Phase experts. PLG’s argument merely reveals their 

disagreement with Dr. Spiliotopoulos’s opinions that should be subject to traditional means of 

challenging expert opinions, including “[v]igorous cross-examination,” and “presentation of 

contrary evidence.” Daubert, 509 U.S. at 596. PLG has not made an appropriate admissibility 

challenge to Dr. Spiliotopoulos’s opinions under the standards of Fed. R. Evid. 702. Therefore, 

PLG’s Motion must be denied. 
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I. Dr. Spiliotopoulos Properly Considered the Contemporaneous Statements of 
ATSDR, its Employees, and Independent Evaluators When Offering Opinions on 
the Qualities of ATSDR’s Modeling Work. 

A. Dr. Spiliotopoulos Considered ATSDR’s Contemporaneous Statements about 
the Intent and Purpose of Developing the Water Models in Forming His 
Opinions. 

 After Camp Lejeune was placed on the National Priorities List by the Environmental 

Protection Agency (“EPA”), ATSDR began conducting epidemiologic health studies on the 

effects of exposure to contaminated drinking water at Camp Lejeune. These studies sought to 

investigate the potential impacts of exposure to contaminated drinking water. However, as 

ATSDR stated in one of its water modeling reports, “[b]ecause limited measurements of 

contaminant and exposure data [were] available to support the epidemiological study, ATSDR 

[used] modeling techniques to reconstruct historical conditions of groundwater flow, 

contaminant fate and transport, and the distribution of drinking water contaminated with [volatile 

organic compounds] delivered to family housing areas.” ATSDR, Chapter A: Summary of 

Findings, D.E. 370-3, at A1.  

Dr. Spiliotopoulos considered this, and similar statements made contemporaneously by 

ATSDR regarding the purpose of the models, in forming and offering his opinions. 

Spiliotopoulos Rep., D.E. 377-3, at 23 (quoting ATSDR’s stated purpose of the Hadnot Point 

water modeling effort). Considering the intent and purpose of a model is necessary as part of 

employing a reliable methodology. PLG’s water modeling experts agree that when evaluating a 

model, it is important to consider the model’s purpose. See Davis Dep. Tr., D.E. 357-3, at 69:11–

70:3, 211:1–6; Konikow Dep. Tr., D.E. 357-9, at 129:1–130:19; see also Exhibit 1, Mustafa 

Aral, Environmental Modeling and Health Risk Analysis (Acts/Risk) 40 (2010) [hereinafter “Aral 

Book Excerpts”] (“All models are developed to answer a specific question about the system 
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outcome. The use of models in a specific application cannot and should not go beyond the 

question posed during the model development stage.”).  

According to Dr. Spiliotopoulos, evaluating model calibration (or “history matching”) is 

“important for evaluating a model’s fit for purpose.” Spiliotopoulos Rep., D.E. 377-3, at 10; see 

also Spiliotopoulos Dep. Tr., D.E. 377-2, at 153:12–25 (testifying that he included a statement 

about the water modeling being done for epidemiologic studies because it “support[s his] work in 

looking at whether the modeling work that was done provided good results to rely on and support 

such evaluations”). Contrary to PLG’s contention, Dr. Spiliotopoulos is not offering any opinion 

inferring the intent or purpose of ATSDR’s studies—rather, he is properly considering ATSDR’s 

own statements of its intent and purpose in support of his opinions.2 PLG’s Motion seeking to 

exclude Dr. Spiliotopoulos’s discussion of ATSDR’s intent and purpose in creating the water 

models should therefore be denied. 

B. Dr. Spiliotopoulos Considered and Relied on the Documents Summarized in 
Section 3.3 of his Report in Forming his Opinions. 

In Section 3.3 of Dr. Spiliotopoulos’s report, he lays out a timeline of events and 

scientific discourse that he considered in rendering his opinions on the reliability of ATSDR’s 

water models. For example, Dr. Spiliotopoulos notes in the timeline that EPA placed Camp 

Lejeune on the National Priorities List, triggering a public health assessment by ATSDR, which 

ultimately led to the decision to create water models. Spiliotopoulos Rep., D.E. 377-3, at 16–17. 

He noted the occurrence of expert panels and other external reviews of the modeling by the 

 
2 In a footnote, PLG asserts that Dr. Spiliotopoulos’s citation to bench books on hydrologic modeling and deposition 
testimony “raises questions as to who wrote certain portions of [his] report.” Pls.’ Mem., D.E. 377, at 11. In response 
to PLG’s subpoena, the United States has produced almost two hundred fifty pages of detailed billing records for the 
period 2022 onward, which show Dr. Spiliotopoulos invoiced at least 180 hours for work on his report in that 
timeframe (and not including the hours of staff or assistants working under Dr. Spiliotopoulos). Moreover, when 
asked at deposition whether he wrote his report, Dr. Spiliotopoulos replied, “Yes, I did.” Spiliotopoulos Dep. Tr., 
D.E. 377-2, at 100:14–15.  
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Government Accountability Office, the Navy, and the NRC. Id. at 17–22. Dr. Spiliotopoulos 

returns to these assessments throughout the body of his report to inform and support his opinions. 

See, e.g., id. at 31–32, 36, 46, 68, 70, 78. Next, Dr. Spiliotopoulos notes the passing of a bill to 

provide medical benefits to those impacted by water contamination at Camp Lejeune, a policy 

decision informed by ATSDR’s modeling efforts. Id. at 22. In support of his opinions, Dr. 

Spiliotopoulos also cited to the ATSDR’s epidemiology studies which included analyses derived 

from ATSDR’s water modeling. Id. at 23–24. 

PLG argues that Section 3.3 of Dr. Spiliotopoulos’s report, titled “Timeline and Scientific 

Discourse on ATSDR’s Camp Lejeune Water Modeling” must be excluded because it constitutes 

a “summary of events, narration of select documents, and opinions on the intent, motive, or state-

of-mind of third parties and are not proper topics of expert testimony.” Pls.’ Mem., D.E. 377, at 

10. In support of this argument, PLG cites two cases: City of Huntington v. AmerisourceBergen 

Drug Corp., No. CV 3:17-01362, 2021 WL 1436672 (S.D.W. Va. Apr. 15, 2021), and In re 

Davol, Inc./C.R. Bard, Inc., Polypropylene Hernia Mesh Products Liability Litigation, 546 F. 

Supp. 3d 666 (S.D. Ohio 2021). Both are inapposite. 

In City of Huntington, the District Court for the Southern District of West Virginia 

excluded the testimony of a former Drug Enforcement Agency (“DEA”) agent who offered an 

overview of the laws that governed the case and how DEA enforces those laws. 2021 WL 

1436672, at *1–3. The court in City of Huntington held that the former DEA agent’s testimony 

constituted an impermissible narrative because it was not necessary to support his opinions. Id. 

The court found that the former DEA agent’s narrative was “the end in itself” because it was not 

provided in support of any separate opinions. Id. at *3. Similarly, in In re Davol, the District 

Court for the Southern District of Ohio excluded a portion of the testimony of a materials science 
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expert that summarized corporate documents because the expert did not rely on those documents 

in forming his opinions. 546 F. Supp. 3d at 670–80. 

These cases are distinguishable. Dr. Spiliotopoulos relied on the timeline in Section 3.3 of 

his report in forming and supporting his opinions. This section outlines the history and purpose 

of the ATSDR’s model, and even PLG’s experts agree that knowing the purpose of a model is 

essential for any modeling effort. See, e.g., Konikow Dep. Tr., D.E. 357-9, at 129:15–23, 

213:14–18; Davis Dep. Tr., D.E. 357-3, at 69:11–21, 211:1–6; see also Ex. 1, Aral Book 

Excerpts, at 40. Dr. Spiliotopoulos’s assessment of the purpose of the model is informed by the 

context of its creation and the scientific discourse surrounding the model’s development. 

Spiliotopoulos Dep. Tr., D.E. 377-2, at 97:25–98:7 (testifying that whether a model is properly 

calibrated “depends on the intended purpose of the model, and it also depends on what data are 

available to perform that calculation, and, therefore, how confident you are in the calibrated 

model that you have”). Unlike the experts in City of Huntington and In re Davol, Dr. 

Spiliotopoulos substantively relied on the documents summarized in Section 3.3 of his report in 

forming his opinions. PLG’ Motion seeking to exclude this Section should therefore be denied. 

C. Dr. Spiliotopoulos Has Not Disclaimed the Opinion That Certain of ATSDR’s 
Modeling Approaches Were Cutting-Edge, but Rather Considered the 
Conclusions of the NRC in Forming His Opinions. 

PLG next contends that Dr. Spiliotopoulos should be precluded from offering opinions 

regarding ATSDR’s modeling approaches that “allegedly were ‘cutting-edge’ and/or still in the 

research stages” because he “disclaimed” them. Pls.’ Mem., D.E. 377, at 12. In support of this 

contention, PLG cites the following portion of the deposition transcript: 

Q: No. You say that, “Some of the modeling approaches used by ATSDR were 
cutting edge, meaning that they used computer codes and modeling techniques that 
are still in the research stage.” Which computer codes and modeling techniques are 
you referring to there? 
A. First of all, that’s a quote; right. 

Case 7:23-cv-00897-RJ     Document 396     Filed 06/04/25     Page 8 of 28

https://ecf.nced.uscourts.gov/doc1/131110139902
https://ecf.nced.uscourts.gov/doc1/131110139896
https://ecf.nced.uscourts.gov/doc1/131110140169
https://ecf.nced.uscourts.gov/doc1/131010140167


9 
 

Q. Sure. In your opinion, which computer codes and modeling techniques of 
ATSDR were still in the research stage that they used for their modeling of Tarawa 
Terrace? 
MR. ANWAR: Object to form. 
THE WITNESS: I believe that’s something for the NRC to articulate. 
BY MS. BAUGHMAN: Can you identify any today? 
A. That’s not part of the opinions that I provide. So I don’t have an opinion on that. 

Spiliotopoulos Dep. Tr., D.E. 377-2, at 147:14–148:6. 

Page 21 of Dr. Spiliotopoulos’s report contains a quote from a study published by the 

NRC, which discusses the “cutting-edge” modeling approaches used by ATSDR in their Camp 

Lejeune modeling efforts. Spiliotopoulos Rep., D.E. 377-3, at 21. The NRC stated: 

Some of the modeling approaches used by ATSDR were “cutting-edge,” meaning 
that they used computer codes and modeling techniques that are still in the research 
stage and have yet to be validated. Furthermore, the absence of measurement data 
for the first 30 years of the contamination period means the predictions, even if 
based on validated codes and models, cannot be evaluated for accuracy. The actual 
concentrations may have been higher or lower than the predictions, but that cannot 
be assessed. 

National Research Council, Contaminated Water Supplies at Camp Lejeune: Assessing Potential 

Health Effects 4 (2009), D.E. 372-3. Moreover, PLG’s own expert and the project manager for 

ATSDR’s water modeling efforts, Morris Maslia, acknowledged that ATSDR’s use of water 

models was “a novel application.” June 30, 2010 Maslia Dep. Tr., D.E. 370-6, at 45:15–17. 

While Dr. Spiliotopoulos is not offering an independent opinion about cutting-edge techniques, 

he considered the NRC’s evaluation and Mr. Maslia’s testimony in forming his own opinions and 

evaluation. For example, Dr. Spiliotopoulos noted that “ATSDR used the Linear Control Model 

(LCM), an alternative methodology for reconstructing the historical concentrations of the 

[volatile organic compound] degradation by-products.” Spiliotopoulos Rep., D.E. 377-3, at 82. 

PLG’s expert, Dr. Aral, agrees. See Aral Rep., D.E. 359-2, at 15–20 (stating that the LCM was 

implemented by the use of TechControl, a sub-model developed by Dr. Aral’s research laboratory 

for the Camp Lejeune modeling effort). Dr. Spiliotopoulos continued, “[a]pplication of [the 
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LCM] methodology relied on the same limited set of observed data, available after 1985. As 

illustrated in Figure 33, the historical reconstruction prior to 1985 cannot be verified, due to lack 

of observed data for the period.” Spiliotopoulos Rep., D.E. 377-3, at 82. 

Even though Dr. Spiliotopoulos never disputed the novelty of ATSDR’s water model, but 

instead merely deferred to the NRC in that regard, any allegedly inconsistent testimony is not a 

basis for exclusion under Fed. R. Evid. 702. See Sanchez v. Bos. Sci. Corp., No. 2:12-CV-05762, 

2014 WL 4851989, at *21 (S.D.W. Va. Sept. 29, 2014) (finding that the existence of inconsistent 

opinions goes to the weight, and not admissibility, of an expert’s testimony). 

D. Without Offering Any Specific Opinions on the Appropriate Use of Models 
by Epidemiologists or Health Professionals, Dr. Spiliotopoulos Rightly 
Acknowledges that the Inaccuracy and Uncertainty of ATSDR’s Water 
Models Could Impact Decisions about Health Effects. 

PLG next asserts that Dr. Spiliotopoulos “has no experience or expertise that qualifies 

him to offer an opinion as to whether or how a health professional can or should use ATSDR’s 

modeling results to assess individual exposures to contaminants or to conduct an epidemiological 

study.” Pls.’ Mem., D.E. 377, at 12. However, Dr. Spiliotopoulos has not offered any such 

opinions. PLG contends these opinions are expressed on page 25 of Dr. Spiliotopoulos’s report. 

Pls.’ Mem., D.E. 377, at 2. Rather than expressing any opinion on how a health professional can 

use ATSDR’s modeling results, however, Dr. Spiliotopoulos merely quoted ATSDR’s reports 

regarding their intended purpose. See Spiliotopoulos Rep., D.E. 377-3, at 25. 

Dr. Spiliotopoulos does not opine whether or how a health professional should use 

ATSDR’s modeling results. Instead, he opines that the accuracy of the contaminant 

concentrations these models simulated are highly uncertain and likely to be biased-high. 

Spiliotopoulos Rep., D.E. 377-3, at 33–55, 87–89. The accuracy of the contamination levels 

simulated by the model is unquestionably relevant to the purpose of determining exposure levels 
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in individuals, and to the purpose of determining health effects associated with exposure—which 

is how PLG has proposed using ATSDR’s water models. Dr. Spiliotopoulos recognized: 

[W]hen models are used for hindcasting or forecasting conditions that are directly 
translated to substantially more important decisions, such as health impacts, the 
implications of model uncertainty have to be viewed more critically. Camp Lejeune 
is a suitable case in point. ATSDR reconstructed historical conditions at Camp 
Lejeune to calculate how much contamination (i.e., dose) people at Camp Lejeune 
were exposed to, by implementing “a unique application of -- of going backward 
in time,” and “reconstructing backwards in time for 30, 35 years at a monthly 
interval,” using “[n]ovel application” of significant complexity. 

Spiliotopoulos Rep., D.E. 377-3, at 28 (emphasis in original) (citations omitted). While Dr. 

Spiliotopoulos does not opine on the appropriate use of water models by health professionals, he 

does acknowledge that, from an engineering perspective, the accuracy of these models is 

insufficient to meet the stated purpose of determining how much contamination was historically 

present in drinking water. Id. This opinion is wholly within Dr. Spiliotopoulos’s realm of 

expertise and PLG has not offered an appropriate basis under Rule 702 to exclude it.   

II. Dr. Spiliotopoulos’s Opinions about the Tarawa Terrace Model Sensitivity 
Analysis and Hadnot Point-Holcomb Boulevard Uncertainty Analysis Are 
Supported by Peer-Reviewed Literature and Based on the Same Standards That 
He Would Use in His Non-Litigation Practice. 

PLG argues that the broad category of Dr. Spiliotopoulos’s opinions related to ATSDR’s 

sensitivity and uncertainty analyses must be excluded. Pls.’ Mem., D.E. 377, at 2, 4–10. 

Sensitivity and uncertainty analyses are steps in the groundwater modeling workflow. In the 

words of PLG’s expert, Dr. Konikow, “there’s always uncertainty and certainly errors in every 

model, and what you try to do in standard practice is assess how serious those errors might be, 

how they might affect the results.” Konikow Dep. Tr., D.E. 357-9, at 228:18–229:11; see also 

Ex. 1, Aral Book Excerpts, at 17 (“Because models are not a precise and complete depiction of 

the real system, they need to be presented and analyzed in a computational environmental which 

should include an analysis of uncertainty.”). Groundwater modelers perform “sensitivity tests 
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and uncertainty analysis to help assess what confidence [one] should have in the model because 

we recognize that the model is not the reality.” Konikow Dep. Tr., D.E. 357-9, at 228:18–229:11. 

Dr. Spiliotopoulos opined, inter alia, that ATSDR’s uncertainty and sensitivity analyses for 

Tarawa Terrace and Hadnot Point-Holcomb Boulevard were not supported by sufficient data, 

were incomplete, and did not account for site-specific conditions. See Spiliotopoulos Rep., D.E. 

377-3, at 2–4. PLG’s arguments against the admissibility of these opinions fail. 

A.  Dr. Spiliotopoulos Considered and Relied on Peer-Reviewed Literature and 
Other Reputable Authorities in Forming His Opinions. 

PLG repeatedly misrepresents that Dr. Spiliotopoulos failed to cite to published literature 

to support his opinions. Pls.’ Mem., D.E. 377, at 5–9. Even a cursory reading of Dr. 

Spiliotopoulos’s report reveals that he repeatedly cites to published scientific literature in support 

of his opinions, and his report includes a reference list identifying published literature that he 

considered in forming his opinions. On the topic of uncertainty analysis, Dr. Spiliotopoulos cited 

numerous studies and books published by his peers in groundwater modeling. For example, Dr. 

Spiliotopoulos identified the “general rule for the calibrated model output (prediction)” from 

John Doherty, Calibration and Uncertainty Analysis for Complex Environmental Models 52 

(2015), and explained that ATSDR’s models failed to obey that rule: 

Recall the discussion in Section 3.1.5 about the general rule for the calibrated model 
output (prediction): “[i]deally, the value of that prediction should lie somewhere 
near the centre of the uncertainty band of the prediction. In this way, the potential 
for predictive error is minimized.”294 Inspection of Figure 36 indicates that the 
calibrated model fails to conform with this rule at two critical times: (a) in the early 
1950s, when the model estimates the arrival of TCE at the pumping wells and, thus, 
the influent to the WTP, and (b) after 1972, when pumping well HP-651 was put in 
service. 

. . . .  
294 Doherty (2015), p. 52 
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Spiliotopoulos Rep., D.E. 377-3, at 92 (emphasis in original); see also id. at 48 (referring to an 

earlier citation of Doherty (2015) in support of the proposition that ATSDR’s uncertainty analysis 

demonstrates that the calibrated model is biased-high). Mr. R. Jeffrey Davis, an expert for the 

Plaintiffs, testified that the Doherty text cited here by Dr. Spiliotopoulos is reliable. Davis Dep. 

Tr., D.E. 357-3, at 306:25–307:8. Dr. Spiliotopoulos modified model inputs and re-ran portions 

of ATSDR’s models to test for compliance with this rule based on the use of site-specific, rather 

than generic, data. Spiliotopoulos Rep., D.E. 377-3, at 48–54, 81–82. 

In his introductory discussion of aspects of groundwater model development, which 

includes model calibration, sensitivity analysis, and uncertainty analysis, Dr. Spiliotopoulos also 

cites to, inter alia, Anderson et al. (2015), Zheng & Bennet (2002), Reilly and Harbaugh (2004), 

and Harter et al. (2018). Spiliotopoulos Rep., D.E. 377-3, at 8–11. 

In Section 4 of his report, Dr. Spiliotopoulos further cites to published literature sources. 

By way of example, Dr. Spiliotopoulos cited a 2002 study by Meyer and Orr (2002) in support of 

the proposition that uncertainty ranges can be skewed upward when site-specific data are ignored 

in favor of generic datasets. Id. at 28. Similarly, Dr. Spiliotopoulos quotes peer reviewed studies 

from Sepulveda et al. (2015) and Clement (2011) to support his opinion that ATSDR’s Tarawa 

Terrace model did not consider the “observed system behavior,” meaning measured or observed 

data taken from the Tarawa Terrace water supply wells and water treatment plant. Id. at 45–46.  

When questioned at deposition, Dr. Spiliotopoulos confirmed the numerous sources he 

relied on in forming his opinions: 

Q. Can you cite any discussion in the literature, textbooks, standards that supports 
your criticism of how ATSDR did its uncertainty analysis for Tarawa Terrace? 
MR. ANWAR: Object to form. 
THE WITNESS: I have cited references with respect to how the uncertainty 
analysis is supposed to be conducted, but it includes various aspects of it. I’m not 
sure you want me to --   
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BY MS. BAUGHMAN: I want to know about this range issue. . . .  

Spiliotopoulos Dep. Tr., D.E. 377-2, at 305:19–306:5. When the attorney for PLG pressed Dr. 

Spiliotopoulos on the justification for his opinions, he elaborated: 

Q: Are you relying on your professional judgment? 
A: And I’m referencing literature sources where a discussion is made about how 
the -- 
Q: Show me where the literature in your -- specifically where you’re criticizing the 
uncertainty analysis in your report, what’s the literature source for that? 
A: I’m sorry. Which part of the criticism that I provided? 
Q: Where you’re criticizing uncertainty analysis, what’s your literature source for 
that? 
A: I believe -- let me just go and check. One aspect is, for example, the value of 
that predictions should -- 
Q: What -- I’m sorry? 
A: Page 92. 
Q: Tell me what I want is the citation to a textbook or a standard in your field or a 
published document. Is that what you’re telling me [you] cited to? 
A: Yes, [footnote] 294, yes. 
Q: What page? 
A: 92. 
Q: So Doherty -- 
A: That’s one that I can -- 
Q: Is this about the uncertainty analysis? 
A: Yes. 
Q: The page 52. Anything else? 
A: And [footnote] 35, that’s section 3[.]1[.]5. 
Q: What page? 
A: Page 8. 
Q: What source are you relying on here? 
A: Hill and Tiedeman talking about precision accuracy of the model outputs when 
we’re looking at uncertainty analysis. 
Q: What about the sections of your report where you discuss your criticisms of the 
uncertainty analysis, did you cite any literature or textbook there in support of your 
analysis or your opinions? 
A: I’m not sure I had to. 
Q: Did you? Yes or no. 
A: I don’t think I did specific for some -- 
Q: Let’s move on because I don’t have much time left. 

Spiliotopoulos Dep. Tr., D.E. 377-2, at 313:5–314:25. 

In short, PLG’s conclusory allegation that Dr. Spiliotopoulos “cite[d] no peer reviewed 

literature or other authorities in support of his critiques of ATSDR’s methodology” is 
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contradicted by both Dr. Spiliotopoulos’s report and the testimony PLG elicited from him at 

deposition. Pls.’ Mem., D.E. 377, at 5. 

Even if Dr. Spiliotopoulos had cited no published literature in support of his opinions—

which is not the case—his opinions would still be admissible under Daubert. This Court has held 

that, in the absence of “specific industry standard[s],” experts are permitted to “base their 

opinions on a comparison with their experience.” Bouygues Telecom, S.A. v. Tekelec, No. 4:05-

CV-78-FL, 2007 WL 9718141, at *9 (E.D.N.C. Feb. 12, 2007); see also McCullock v. H.B. 

Fuller Co., 61 F.3d 1038, 1044 (2d Cir. 1995) (“Disputes as to . . . lack of textual authority for 

[an] opinion, go to the weight, not the admissibility, of [the] testimony.”). Indeed, PLG’s own 

experts agree with Dr. Spiliotopoulos that contaminant fate and transport modeling require the 

subjective judgment of the modeler. See, e.g., Konikow Dep. Tr., D.E. 357-9, at 289:6–17 

(agreeing that calibration targets are subjective and that assessing whether a model is calibrated 

is “partly subjective.”); Davis Dep. Tr., D.E. 357-3, at 132:7–25 (testifying that the amount of 

data needed to accurately perform water modeling is “completely subjective.”); Konikow 

Groundwater Modeling Chapter, D.E. 370-2, at 14 (“However, even with regression modeling, 

the hydrologic experience and judgment of the modeler continues to be a major factor in 

calibrating a model both accurately and efficiently.”). 

Contrary to PLG’s unsupported assertions, Dr. Spiliotopoulos identified peer reviewed 

literature and other reputable authorities that support his critiques of ATSDR’s methodology in 

his report and in his deposition testimony. Moreover, PLG’s own experts agree that water 

modeling requires some subjective analysis on the part of the modeler, for which textual 

authority does not exist. See Davis Dep. Tr., D.E. 357-3, at 132:10–25 (testifying that “there’s not 

a definition written” for how much data is needed to accurately perform modeling); see also 
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ATSDR Response to DON Letter, D.E. 357-7, at 10 (“Note, however, that published or accepted 

groundwater-flow or contaminant fate and transport model calibration standards are currently not 

established.”) (emphasis in original). Finally, lack of textual authority in support of expert 

opinions is more properly raised on cross-examination, not under a motion to exclude pursuant to 

Fed. R. Evid. 702. McCullock, 61 F.3d at 1044. Accordingly, to the extent PLG’s Motion is based 

on arguments related to Dr. Spiliotopoulos’s cited authorities, it should be denied. 

B. Dr. Spiliotopoulos’s Opinions About the Adequacy of the ATSDR’s 
Uncertainty Analysis of the Tarawa Terrace and Hadnot Point Models are 
Entirely Consistent with Each Other, as Demonstrated by His Report and 
Deposition Testimony. 

PLG next claims that Dr. Spiliotopoulos’s opinions are contradictory. See Pls.’ Mem., 

D.E. 377, at 5, 6–7. In support of this claim, PLG argues that Dr. Spiliotopoulos contradicts 

himself by alternatively “endorsing” and critiquing ATSDR’s selection of parameter ranges for 

its model calibration. Pls.’ Mem., D.E. 377, at 6 (quoting Spiliotopoulos Rep., D.E. 377-3, at 87). 

PLG is conflating two separate opinions that are wholly distinct and do not contradict one 

another. One involved the Tarawa Terrace model and the other involved the Hadnot Point model; 

both critiqued ATSDR’s failure to match site-specific conditions. At deposition, Dr. 

Spiliotopoulos stated that his report referred to the parameter ranges that ATSDR itself, not Dr. 

Spiliotopoulos, indicated were reasonable for Tarawa Terrace. Spiliotopoulos Dep. Tr., D.E. 377-

2, at 311:13–312:1. 

For the Tarawa Terrace model, Dr. Spiliotopoulos opined that ATSDR’s selection of 

parameter ranges for calibrated values “did not consider appropriate parameter values based on 

site-specific data.” Spiliotopoulos Rep., D.E. 377-3, at 52–53. This opinion was based on Dr. 

Spiliotopoulos re-running the model using modified parameter values within the range of site-

specific data, then comparing those results to ATSDR’s. Id. at 53. 
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For the Hadnot Point-Holcomb Boulevard sensitivity analysis, Dr. Spiliotopoulos opined 

that ATSDR selected extreme parameter values that are both outside the range of values used for 

the Tarawa Terrace analysis, and not representative of site conditions. Id. at 88–89. Bearing in 

mind that ATSDR was modeling the same aquifer at Hadnot Point and Tarawa Terrace, it is clear 

these opinions do not contradict one another. Dr. Spiliotopoulos’s opinions are entirely consistent 

and appropriate, and should not be excluded. 

C. Dr. Spiliotopoulos Applied the Same Standards Used in His Non-Litigation 
Work to Reach His Opinions in this Case. 

PLG next asserts that Dr. Spiliotopoulos has failed to apply the same standards he uses in 

his non-litigation work to his opinions in this case. Pls.’ Mem., D.E. 377, at 5, 7–8. Despite their 

earlier critique of Dr. Spiliotopoulos’s qualifications, PLG acknowledges within this argument 

that he previously served as the “lead modeler” for a high-profile groundwater flow and 

contaminant transport model for a decommissioned nuclear production complex. Id. at 7. PLG 

states that Dr. Spiliotopoulos “criticized the uncertainty analysis for Hadnot Point as being 

limited to the effects of historical pumping variability,” and argues that the uncertainty analysis 

he performed for the Hanford nuclear site was “at least as limited.” Id. at 8. PLG also notes that 

“there is no indication that the parameter range used for Hanford met the not-too-narrow and not-

too-wide standard applied by Dr. Spiliotopoulos here.” Id. 

Despite their argument to the contrary, PLG demonstrated through deposition questioning 

that Dr. Spiliotopoulos is applying exactly the same standards to ATSDR’s work that he applied 

to his non-litigation work at the Hanford site. Dr. Spiliotopoulos testified that “it was impossible 

to do” history matching for contaminant concentrations at the Hanford site “because we had very 

limited data.” Spiliotopoulos Dep. Tr., D.E. 377-2, at 87:3–10. At the Hanford site, Dr. 

Spiliotopoulos performed an uncertainty analysis on the only parameter for which they had 
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enough data; this was followed by a period of data collection and iterative model refinement. See 

id. at 84:11–88:10. PLG’s argument ignores the critical difference between what Dr. 

Spiliotopoulos was doing at Hanford, which was forecasting future contaminant levels based on 

existing and evolving data, and what ATSDR was trying to do for Camp Lejeune, which was 

hindcasting historic concentration levels with limited data. At Hanford, Dr. Spiliotopoulos 

necessarily did not yet have the contaminant concentrations that PLG argues that he should have 

used to perform an uncertainty analysis there. 

PLG’s argument obfuscates the fact that, for the Hanford site, Dr. Spiliotopoulos’s limited 

uncertainty analysis was the first step in a decade-long, multistep process of designing a 

contaminant remediation scheme and continually refining the model as more data were collected. 

See id. at 95:20–96:3. Dr. Spiliotopoulos’s criticism of ATSDR’s uncertainty analysis is based on 

the fact that, for Hadnot Point, the uncertainty analysis on historical pumping variability was the 

only systematic uncertainty analysis performed. See Spiliotopoulos Rep., D.E. 377-3, at 92. 

Because of the historical nature of ATSDR’s work, there was no opportunity to collect more data 

to refine the models. Id.  PLG’s critique conflates these two very different processes to 

misrepresent Dr. Spiliotopoulos’s opinions. 

Moreover, PLG’s assertion that “there is no indication that the parameter range used for 

Hanford met the not-too-narrow and not-too-wide standard applied by Dr. Spiliotopoulos here” is 

misleading. Pls.’ Mem., D.E. 377, at 8. Dr. Spiliotopoulos testified at deposition that the range of 

hydraulic conductivity parameter values used to calibrate the Hanford model was based on the 

available data at the time. Spiliotopoulos Dep. Tr., D.E. 377-2, at 90:3–10. Moreover, Dr. 

Spiliotopoulos made clear that the purpose of his modeling work at the Hanford site was to 

predict future characteristics of the contaminant plume in the aquifer in support of groundwater 
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remediation efforts. Id. at 78:14–17. Because of the predictive nature of this work, Dr. 

Spiliotopoulos did not know the potential range of hydraulic conductivities and thus could not 

have applied any “not too-narrow and not-too-wide” standard to evaluate them. However, as 

additional data became available over time, the potential range of hydraulic conductivities and 

other model parameters were further evaluated. This is obviously distinguishable from ATSDR’s 

Camp Lejeune modeling, which employed “historical reconstruction” to look back in time rather 

than to forecast future conditions. PLG’s Motion regarding the standards Dr. Spiliotopoulos 

applied should therefore be denied. 

D. Dr. Spiliotopoulos’s Opinions on ATSDR’s Uncertainty and Sensitivity 
Analyses are Based on a Reliable Methodology. 

PLG next asserts that Dr. Spiliotopoulos’s opinions on the uncertainty and sensitivity 

analyses conducted by PLG are unreliable because “all of the work Dr. Spiliotopoulos has done 

to form his opinions in this case was done for or in anticipation of litigation.” Pls.’ Mem., D.E. 

377, at 8 (citing Daubert II, 43 F.3d at 1317). PLG cites an isolated statement from the Ninth 

Circuit’s decision in Daubert II, but they fail to acknowledge the ensuing paragraphs, which 

make clear that “preexisting or independent research” is not the standard for admission, but only 

one part of determining whether any expert is employing a reliable methodology. 43 F.3d at 

1317–18 (“If the proffered expert testimony is not based on independent research, the party 

proffering it must come forward with other objective, verifiable evidence that the testimony is 

based on ‘scientifically valid principles.’”). 

It is true that all of the work Dr. Spiliotopoulos has done on the topic of groundwater 

modeling Camp Lejeune has been in the context of litigation, but it is based on methods that he 

has frequently used outside the context of litigation. It is not necessary that each expert have 

non-litigation experience on a particular site for their opinions to be admitted; otherwise most of 
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the expert opinions offered in this case would be excludable, including those of PLG’s own 

Water Contamination Phase experts, Mr. Davis, Dr. Jones, and Dr. Sabatini. As shown by his 

prior work on the Hanford project, Dr. Spiliotopoulos is employing the same methods here that 

formed the basis of his past research and non-litigation experience. That Dr. Spiliotopoulos is 

employing standard non-litigation methodologies in his critique of ATSDR’s water models is also 

demonstrated by the fact that his opinions are consistent with those of other reviewers of 

ATSDR’s water models, including the Navy, the NRC, and Dr. Prabhakar Clement’s published 

critiques in the journal Groundwater. See, e.g., June 19, 2008, Navy Letter to ATSDR, D.E. 370-

5; 2009 NRC Rep., D.E. 372-3, at 50 (“Without historical geochemical data, the uncertainty 

associated with many of the input parameters (such as the biodegradation parameters) could be 

very high.”); T. Prabhakar Clement, Complexities in Hindcasting Models—When Should We Say 

Enough Is Enough?, 49 Groundwater 620 (2010), D.E. 372-4, at 6 (“One of the important 

concerns that limit the use of bioreactive transport models at chlorinated solvent sites is the lack 

of problem-specific information on input parameters.”). 

Furthermore, Dr. Spiliotopoulos’s testimony in this case is based on the totality of his 

experience as a civil and environmental engineer and his research on groundwater modeling. See, 

e.g., Spiliotopoulos Rep., D.E. 377-3, at 1 (“To conduct my evaluation and render my expert 

opinions, I relied on my education, research, and professional experience.”); Spiliotopoulos Dep. 

Tr., D.E. 377-2, at 244:10–17 (testifying that his opinion that there were insufficient data to 

conduct a reliable model calibration and uncertainty analysis was based on his professional 

judgment and experience). Dr. Spiliotopoulos employed reliable methodology in forming his 

opinions, and therefore, PLG’s Motion should be denied. 
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III. Dr. Spiliotopoulos Properly Considered and Relied on Information Provided by 
Other Experts in in Informing His Own Opinions. 

PLG next argues that Dr. Spiliotopoulos’s opinions on two subjects are “neither helpful 

nor admissible” because they are “parroted opinions of other experts.” Pls.’ Mem., D.E. 377, at 

13. PLG seeks to prevent Dr. Spiliotopoulos from testifying as to losses of volatile organic 

compounds in water during the water treatment process, and the earliest time at which PCE 

began entering the environment. Id. at 13–14. PLG alleges that Dr. Spiliotopoulos simply relied 

on the opinions of other experts in this litigation, without offering “additional findings.” Id. 

However, Dr. Spiliotopoulos does not parrot the opinions of other experts as his own; rather, he 

relies on facts or data supplied by other experts. Given that an expert in Dr. Spiliotopoulos’s field 

would reasonably rely on these types of facts and data in forming his opinions, this is permitted 

under Fed. R. Evid. 703. 

A. Dr. Spiliotopoulos Relied on the Fact that Contaminant Losses Would Occur 
During Water Treatment, and Incorporated that Fact into His Own 
Opinions. 

Contrary to PLG’s assertion, Dr. Spiliotopoulos has not offered an opinion quantifying 

the losses of volatile organic compounds during the water treatment process. See generally 

Spiliotopoulos Rep., D.E. 377-3. Dr. Spiliotopoulos testified: 

Q: . . . Have you, yourself, performed any calculations regarding alleged 
volatilization losses at the water treatment plant? 
A: No, I have not, my calculations [e]nd at the treatment plant. 
Q: So are you relying on the calculations and the opinions of Dr. Hennet regarding 
the quantification of any alleged VOC losses at the water treatment plants? 
A: Yes, I do. 

Spiliotopoulos Dep. Tr., D.E. 377-2, at 192:23–193:10. As his deposition testimony and report 

make clear, Dr. Spiliotopoulos is relying on Dr. Hennet’s calculations for the general proposition 

Case 7:23-cv-00897-RJ     Document 396     Filed 06/04/25     Page 21 of 28

https://ecf.nced.uscourts.gov/doc1/131010140167
https://ecf.nced.uscourts.gov/doc1/131110140170
https://ecf.nced.uscourts.gov/doc1/131110140169


22 
 

that VOC losses occurred during treatment and incorporating that proposition into his own 

opinions.3  

For example, Dr. Spiliotopoulos opines that ATSDR’s reference to “finished water” or 

“groundwater that has undergone treatment” in its studies is more appropriately described as 

“concentrations in the influent to the treatment plant.” Spiliotopoulos Rep., D.E. 377-3, at 30–31. 

That is because ATSDR “ignored contaminant losses that would occur during treatment.” Id. at 

30. Based on this understanding, Dr. Spiliotopoulos opined that “treatment of the influent to the 

treatment plant resulted in evaporative and other losses, reducing contaminant concentrations in 

the ‘finished’ water.” Id. at 68–69. In support of this opinion, Dr. Spiliotopoulos relied both on 

Dr. Hennet’s calculations, as he testified at deposition, and on his reading of ATSDR’s report, as 

evidenced by the citation which follows this proposition. See id. at 30. For this reason, PLG’s 

Motion should be denied. 

B. Dr. Spiliotopoulos Relied on a Historian to Determine a Historical Fact, then 
Incorporated that into His Own Opinions. 

Also contrary to PLG’s assertion, Dr. Spiliotopoulos did not offer the opinion that the 

PCE source release date at ABC One-Hour Cleaners was incorrect without “additional 

corroboration, validation, or explanation.” Pls.’ Mem., D.E. 377, at 13 n.3. As Dr. Spiliotopoulos 

testified at deposition, he relied on the report of the United States’ expert historian, Dr. Brigham, 

to support the proposition that the off-base dry cleaner began operating in June of 1954. 

Spiliotopoulos Dep. Tr., D.E. 377-2, at 223:2–18. Dr. Spiliotopoulos also testified that he 

reviewed for himself the documents Dr. Brigham cited. Id. Dr. Spiliotopoulos properly relied on 

a historian to search and interpret the historical record. See vonRosenberg v. Lawrence, 413 F. 

 
3 Despite PLG’s challenge to this opinion, PLG’s expert, Dr. Sabatini, also opines that contaminant losses would 
occur during water treatment. See Sabatini Rebuttal Rep., D.E. 374-5, at 13–14 (opining that the percentage loss of 
VOCs of interest during water treatment was “less than 6 to 12%”). 
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Supp. 3d 437, 450 (D.S.C. 2019) (collecting cases) (finding that historians generally possess the 

specialized knowledge to identify, review, and synthesize voluminous historical texts). 

Dr. Spiliotopoulos then incorporated this expert’s information into his own opinions by 

explaining how the earlier contamination start date impacted ATSDR’s water models. For 

example, Dr. Spiliotopoulos wrote that “the impact of this discrepancy in release start dates is 

that the PCE plume reached the water supply wells sooner in ATSDR’s model.” Spiliotopoulos 

Rep., D.E. 377-3, at 36. Moreover, to demonstrate the impact on model outputs of changing the 

PCE release start date and other suggested corrections, Dr. Spiliotopoulos ran a modified version 

of ATSDR’s simulation. Id. at 39–41. This analysis compared the results of ATSDR’s original 

model with Dr. Spiliotopoulos’s corrections, based, in part, on a later contamination start date. Id. 

This is clearly the type of information that an expert like Dr. Spiliotopoulos reasonably relies 

upon. Fed. R. Evid. 703.  

In support of the proposition that Dr. Spiliotopoulos’s opinions on contaminant losses 

during water treatment and the contamination start date should be excluded, PLG cites to In re 

Davol, 546 F.Supp.3d at 676, and Funderburk v. S.C. Elec. & Gas Co., 395 F. Supp. 3d 695, 

721–22 (D.S.C. 2019). Pls.’ Mem., D.E. 377, at 13-14. In In re Davol, the Southern District of 

Ohio acknowledged that experts may “base an opinion on another expert witness for a point of 

expert knowledge not personally possessed,” but may not “simply parrot another expert’s 

opinion.” 546 F.Supp.3d at 676 (internal quotations omitted). The court, in fact, declined to 

exclude the opinions of an expert, even though the expert did not independently validate the 

findings of another expert before relying on them. Id. at 675–76. This is because the expert in In 

re Davol also made “many of his own findings, which [were] well-supported by scientific 

literature and his own testing and experience.” Id. at 676. 
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As with the expert in In re Davol, Dr. Spiliotopoulos is taking data points supplied by 

experts in different fields into consideration in forming his ultimate opinions. Id. at 675–76. Dr. 

Spiliotopoulos is then incorporating that data into his own opinions, offering context or 

performing new analysis using that information.  

In Funderbunk, the District of South Carolina excluded as unreliable the opinion of an 

expert based only on his review of another expert’s report. 395 F. Supp. 3d at 721–22. Unlike the 

expert in Funderbunk, Dr. Spiliotopoulos has not simply repeated opinions that another expert is 

prepared to provide. Id. Rather, Dr. Spiliotopoulos reviewed the documents that support the 

information provided by other experts in addition to their reports. He then utilized that data to 

inform his own opinions. Accordingly, Dr. Spiliotopoulos’s opinions related to contaminant 

losses during treatment and the PCE release start date should not be excluded. 

IV. Dr. Spiliotopoulos’s Opinion on Well HP-634 is Reliable, and PLG’s Attack on 
This Opinion is Based on their Disagreement with His Ultimate Conclusion, Not 
His Methodology. 

Finally, PLG seeks to exclude Dr. Spiliotopoulos’s opinion that ATSDR misinterpreted a 

water quality sample taken from well HP-634 on January 16, 1984. Pls.’ Mem., D.E. 377, at 14. 

PLG argues that Dr. Spiliotopoulos’s analysis of this issue is “not based on sufficient facts or 

data, nor is it the product of reliable principles and methods” because Dr. Spiliotopoulos relied 

on: (1) Dr. Hennet’s analysis of the issue, (2) the fact that HP-634 is upgradient from 

contamination sources, and (3) other samples taken at that well around the same time. Id. 

PLG does not explain how or why Dr. Spiliotopoulos’s reliance on these three sources is 

insufficient or unreliable. Rather, they argue that Dr. Spiliotopoulos ultimately reached the wrong 

conclusion from those sources. See generally id. at 14–16. In support of this, PLG cites their own 

expert rebuttal report five times. Id. 
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For example, PLG asserts that Dr. Spiliotopoulos offered an opinion on the water quality 

sample “without the identification of a reliable methodology, performance of any calculations or 

measurements, or citation to authority . . . .” Id. at 15. In support of this argument, PLG cites the 

rebuttal report of their own expert, Dr. Konikow, who does not identify any employed 

methodology, perform any calculations or measurements, or cite to any authority in reaching the 

opposite conclusion. See Konikow Rep., D.E. 377-6, at 21–23. Rather, both experts rely on 

general principles of hydrogeology to reach differing conclusions from the same data. See id. 

This is plainly a dispute between the Parties’ experts on the interpretation of the same 

sampling data, not a dispute over the reliability of Dr. Spiliotopoulos’s testimony. PLG asks this 

Court to exclude Dr. Spiliotopoulos’s testimony not because it is irrelevant or unreliable, but 

because PLG’s experts disagree with it. This is not a proper basis for the exclusion of testimony 

under Fed. R. Evid. 702. Bresler v. Wilmington Tr. Co., 855 F.3d 178, 195 (4th Cir. 2017); see 

also Funderburk, 395 F. Supp. 3d at 721 (finding that a party’s Daubert challenge improperly 

focused on the way in which an expert interpreted data, not the methodology underlying the 

opinion). 

In Bresler, the defendant challenged the plaintiffs’ expert accountant on the basis that his 

calculations were erroneous and used an improper discount rate. 855 F.3d at 195–96. The Fourth 

Circuit affirmed the trial court’s refusal to exclude the testimony, holding that, “[t]o determine 

whether an opinion of an expert witness satisfies Daubert scrutiny, courts may not evaluate the 

expert witness’ conclusion itself, but only the opinion’s underlying methodology.” Id. at 195. The 

Fourth Circuit further stated that “questions regarding the factual underpinnings of the expert 

witness’ opinion affect the weight and credibility of the witness’ assessment, not its 

admissibility.” Id. (cleaned up). As in Bresler, PLG is challenging Dr. Spiliotopoulos’s 
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interpretation of the sampling data because the result is unfavorable to them. This argument is 

inapposite under the Fed. R. Evid. 702 analysis, and PLG’s Motion should therefore be denied. 

CONCLUSION 

For the foregoing reasons, the United States requests that the Court deny PLG’s Motion 

for an Order Excluding Certain Opinions of Alexandros Spiliotopoulos, Ph.D. 

[Signature page to follow.] 
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16 1 Introduction 

Mass flux in - Mass flux out ± > (sources/sinks) = 0 (13) 

Most of the models that are used in contaminant transformation and transport 
simulations, which are based on the conservation of mass principle, can be studied 
as deterministic models. That is, these models will yield one expected outcome at a 
spatial point and time, based on a given set of initial and boundary conditions and a 
set of parameters used in defining the process. In this approach one assumes that 
there is no uncertainty in conceptualization, data, model structure or the scale 
selected. It is well established in the literature that there are numerous uncertainties 
in each phase of the modeling effort, which may lead to the predictive uncertainty. 
To address uncertainty issues, models may also be used in a probabilistic sense, 
yielding not only the expected outcome, but also the variance of that expected 
outcome. In the probabilistic analysis of the models reviewed in this book, the 
Monte Carlo approach will be adopted to address uncertainty issues. There are also 
more recent approaches that can be categorized as non-probabilistic analysis or 
possibilistic analysis. The possibilistic approach has demonstrated that it can be 
employed in addressing uncertainty in environmental or health risk modeling where 
the uncertainty is heuristic. The possibilistic approaches include the Fuzzy systems 
approach (Kosko 1997; Kernel and Aral 2004; Kentel and Aral 2005), will not be 
covered in this book but the reader is referred to the above references since this type 
of analysis is important health risk analysis. 

1.2 Environmental Modeling Concepts 

A review of the modeling field indicates that several environmental models with 

varied degrees of complexity and different simulation objectives are available in 
the literature. One problem with most of these models is that it is often very difficult 
to implement them. These difficulties are due in part to the inaccessibility of the 
computer codes used in the solution, and in part to the problem-oriented design 
employed in the development of these models and codes. Thus some of these 
models are either never used or used by few users who have access to their 
computational platforms. 

Models and model building is at the core of environmental management studies 
and significant time and effort must be spent to make proper decisions to appropri-

ately represent the system being modeled. Several authors have discussed exten-
sively the importance of models and model building in their books on scientific 
methods (Rosenbluth and Wiener 1945; Bloschl and Sivapalan 1995; Schnoor 
1996). The following statement can be considered to be a consensus: 

No substantial part of the universe is so simple that it can be grasped and controlled without 
abstraction. Abstraction Consists in replacing the part of the universe under consideration 
by a model of similar but simpler structure- Models . . . are thus a central necessity of 
scientific procedures. 
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1.2 Environmental Modeling Concepts 17 

Thus, a scientific model can be defined as an abstraction of some real system, an 
abstraction that can be used for prediction and management purposes. The purpose 
of a scientific model is to enable the analyst to determine how one or more changes 
in various aspects of the modeled system may affect other aspects of the system or 
the system as a whole. Because models are not a precise and complete depiction 
of the real system, they need to be presented and analyzed in a computational 
environment which should include an analysis of uncertainty. Uncertainty analysis 
may lake the form of sensitivity analysis, or for more complicated applications, 
statistical uncertainty analysis may be utilized. We should also emphasize the 
difference between two commonly used terms in modeling "uncertainty" and 

"variability." As expected they refer to two distinct concepts: 
Uncertainty is a measure of the knowledge of the magnitude of a parameter. 

Uncertainty can he reduced by research, i.e., the parameter value can be refined 
through further experimentation or further data collection. 

Variability is a measure of the heterogeneity of a parameter or the inherent 
variability in a chemical property. Variance cannot be reduced by further research, 
but a model can be developed such that it would mimic the variability of the 
parameter used in the model. 

There are many advantages to the use of mathematical models. According to 
(Fishman 1996), these advantages are: 

i. Enable investigators to organize their theoretical beliefs and observations 
about a system and to deduce the logical implications of this organization; 

it. Lead to improved system understanding; 
iii. Bring into perspective the need for detail and relevance; 
iv. Expedite the analysis; 
v. Provide a framework for testing the desirability of system modifications; 
vi. Allow for easier manipulation than the system itself permits; 
vii. Permit control over more sources of variation than direct study of a system 

would allow; and, 
viii. Analysis is generally less costly than observing the system. 

On the other hand, there are at least three reservations one should always bear 
in mind while constructing and using a model (Rubinstein 1981). First, there is no 
guarantee that the time and effort devoted to modeling will return useful results and 
satisfactory benefits. Occasional failures are expected to occur because of limited 
resources allocated to modeling. More often, however, failure results when the 
investigator relies too much on the method and not enough on ingenuity in construct-
ing the model. The proper balance between the two is the key to success in modeling. 
The second reservation concerns the tendency of the investigator to treat his or her 
mathematical description of the problem as the best representation of the reality. One 
should be open minded in understanding the limitations of the proposed model. The 
third reservation concerns the use of the model outside the predictive range of the 
model developed. When working with a model, care must be given to ensure that 
the analysis remains within the valid representation range of the model. These are 
important concepts of concern when working with models. 
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18 I Introduction 

It is well known that model design, almost by definition, is a pragmatic process. 
The simulation objectives determine the basic form, usability, and generality of the 
model proposed. Further, an investigation of the various environmental models, 
approved by U.S. Nuclear Regulatory Commission Regulatory Guide (Till and 
Meyer 1983), which focuses on their usability and applicability in predicting the 
transport of effluents in a surface water environment following an accidental spill, 
clearly indicates the necessity of the availability of user-friendly and well docu-
mented computer models. In this book, a review of the most common environmen-

tal models used in environmental health risk assessment studies is provided for the 
groundwater, air and surface water pathways, along with a user-friendly software 
interface to implement them and to facilitate their use. 

Environmental transformation and transport models are built for the following 
purposes: (i) to evaluate the transformation and transport of contaminants in the 
environment by quantifying physical, chemical and biological processes that affect 
migration; (ii) to evaluate dynamic point-of-contact concentration levels that 
may have occurred in the past, are occurring presently or will occur in the future; 
and, (iii) to evaluate the outcome of different scenarios under various loading or 
management action alternatives. Since determination of exposure concentrations to 
toxicants constitutes the first step in health risk assessment, and direct field mea-

surements may not be always available environmental modeling is becoming more 
and more of a permanent part of environmental health risk assessment studies. 
Among the models that are available for environmental modeling, the first 

category of models may be identified as empirical models. In these models the des-
cription of cause-and-effect relationships is based on observational data sets with 
minimum analytic understanding of how the system works based on the relation-
ships developed through the analysis of the data. These models are tied to empirical 
constants obtained from field or experimental data which may become the source of 
considerable uncertainty in applications. 

The other category of models may be identified as mechanistic models. When we 
express the cause-and-effect relationships for a certain process or a system in terms 
of mathematical equations (differential or algebraic), the resulting models are 
identified as mechanistic (deterministic). Mechanistic models, in principle, reflect 

our understanding of how the system works, and they are based on certain account-
ing principles such as conservation of mass, energy or momentum. The complexity 
of these models depends on the level of detail for a process in a specific model or the 
dimensionality of the model developed. 

Model accuracy and reliability are two of the more important aspects of model-
ing, which should not be overlooked. If a model is to be accepted as a reliable 
predictive tool, the numerical error bounds generated in computation should be 
within acceptable limits, and the model should be calibrated regionally or locally 
using available data. Proceeding in this direction, much of the recent work done in 
environmental quality modeling has been oriented towards improving models and 
incorporating better numerical solution techniques, the accuracy of which by far 
surpasses the availability and accuracy of the field parameter data that have to be 
used with such models. Scarcity of the field data, especially in air, groundwater and 
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1.2 Environmental Modeling Concepts 

surface water quality modeling, is well known to researchers and engineers working 
in this field. Currently there is some disagreement among researchers as to whether 
higher priority should be placed on still further developments in model sophistica-
tion or on parameter prediction to improve accuracy. 
A very simplistic model may use a very crude definition of a physical process, 

with few parameters to define the process. A very complex model may use a very 
detailed definition of a physical process, with a significant increase in parameters 
that is used to define the process. Naturally, improved sophistication of models is 
associated with an increase in the number of model parameters. Since it is likely 

that many of the additional parameters included in the model would be defined 
only in qualitative terms or with lesser accuracy, a relatively more sophisticated 
model can be less reliable than a simpler version. On the other hand, some systems 
and some physical phenomena are so complex in nature that there is often little 
reason to believe that good simulations are possible with simplified representations. 
In such cases, the need for more detailed and realistic models should be clear. 
A simple and crude example can be found in the case of effluent transport models 
for a river system. Given our current understanding and knowledge of turbulence 
characteristics, secondary currents, roughness concepts and sediment transport 
characteristics of natural rivers, it may be overly ambitious to develop a three-
dimensional effluent transport model for a river network system just because it is 
possible numerically. Going to the other extreme, if in order to simplify such a 
model, that is, in order to reduce the model's dependence on complex field para-
meters, if one ignores the diffusive transport terms while keeping the convective 
transport terms in the analysis, the reliability of the model becomes questionable, 
at least for certain problem types such as accidental spills of pollutants or daily 
cyclic variation of spills, as is the case in sewage output. Thus, it is not necessarily 
true that models become more accurate as more complex definitions are used 
to define the model's processes. Inaccuracies may also result from the increase in 
the number of parameters associated with the detailed definition of a process or 
system. As observed in many applications, the likelihood of accurately defining 

these parameters is very low, resulting in an inherent loss of accuracy for complex 
models. On the other hand simplifying models has pitfalls as indicated in the 
example above. Thus, in developing models, the optimum solution is between 

these two extremes. In an attempt to achieve this balanced goal, an effort is made 
in this book to introduce the reader to one-, two- and three-dimensional screening 
level models and analytical solutions to these models, which, in most cases, pro-

vide sufficient detail for understanding the bounds of the problem at hand at a 

screening level. 
Evaluation of advection and dispersion of effluents in natural or manmade 

environments is a complex phenomenon, especially if an effort is made to cover 

all aspects of their evaluation. In an industrialized society, a great variety of 
pollutants may get mixed into groundwater, surface waters or air. Dissolved matters 
such as chemicals, radioactive materials and salt, solid matters such as sediments, 
and temperature gradients introduced by power plants can be cited as a few of the 
sources of environmental pollution. Different models are needed to describe the 
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transport characteristics of different pollutants. Thus, in environmental modt 
building, the decision or selection of the contaminant type is the first step whic 
needs to be addressed. A conservative chemical behaves differently than a non 
conservative chemical. The stage of effluent transport is another variable th 
needs to be considered, since mathematical models describing initial mixin• 
zones are considerably different than mathematical models that are used to evaluat 
conditions for well mixed zones. In building an environmental model, the thin 
variable to consider is the choice of model dimensions. Given the present knowledgi 
in numerical and analytical methods, it is usually tempting to develop a three 
dimensional model, with the assumption that the parameters needed in implement 
ing such a model are readily available. Thus, determination of the dimensionality 0 
physical and kinematic parameters is the third complexity encountered in mode!in 
transformation and transport of pollutants in natural or manmade environments 
Within this set of available choices and options the best approach to modeling i 
very difficult to identify. That is why modeling is considered to be both a science 
and art in the current literature. 

In the course of time, a number of deterministic, empirical or stochastic models 
have been proposed to predict mass transport in multipaihway environments such 

as air, groundwater and surface water. Contaminant transformation and transport 
models, as they are treated in this book, fall under the category of mechanistic 
models. These models are generic models which may be used in the analysis of a 
wide range of conditions and site specific applications. Mechanistic models may 
also be used in a statistical sense, in which case one or more of the parameters will 
be defined in terms of probability density functions. This approach would yield the 
outcome in terms of statistical (probability) distributions. This mode of analysis, i.e. 
Monte Carlo analysis, will be used extensively in this book. Stochastic models seek 
to identify the probability of the occurrence of a given outcome based on probabi-
listic variations that are introduced to the model. They may be used to identify the 
variability in output based on variability in input parameters or variability of the 
boundary conditions of the problem analyzed. 

The environmental modeling field has its own terminology and associated 
definitions. A review of the important terms used in this field is given in Appendix 2. 
In addition to the definitions of the terminology given in Appendix 2, the acronyms 
and abbreviations given in Appendix I are commonly used in the environmental 
modeling literature. It is important for the reader to familiarize themselves with 
their definitions. 

1.3 Environmental Toxicology 

Chemicals on earth are plenty and diverse. In addition to their presence, the 
chemical industry worldwide manufactures and markets thousands of new synthetic 
chemicals each year. Thus, it is safe to say that we are constantly being exposed 
to natural or synthetic chemicals in our ambient environment. The task of 
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Chapter 2 
Principles of Environmental Modeling 

Everything should he made as simple as possible, but not simpler. 
Albert Einstein 

We have three primary scientific tools at our disposal to evaluate transformation 
and transport processes in the environment or to find solutions to environmental 
pollution problems and make decisions based on these solutions. These are, in no 
particular order: (i) direct field observations; (ii) laboratory scale tests and physical 

modeling studies; and, (iii) mathematical modeling. We recognize that transfoima-
4 tion and transport processes that may occur in the environment and the accurate 
,e characterization of these processes both in the physical and also the mathematical 
if. domain are extremely complex. Thus, each of these tools has its appropriate place 

and mutually supporting role, as well as advantages and disadvantages of its use in 
understanding and solving environmental pollution problems. 

It is well established in the literature that field observations tend to be costly 
but necessary. They are commonly used after the primary symptoms of the pro-
blems emerge at a contamination site. In this sense, they are extremely useful in 
characterizing the extent of the environmental problem, identifying its bounds or 

fA 

in evaluating whether the proposed remedial strategies are contributing to the 
solution of the environmental problem at a specific site. Laboratory studies, on 
the other hand, may be only useful in understanding the basic principles governing 
the problem at a micro or molecular scale. Findings and knowledge gained at this 
scale may experience significant problems in up-scaling the results to the field-scale 

analysis. Nevertheless, laboratory studies are extremely useful for both solving 
problems and for understanding micro scale issues at various stages of env ironmen-
tat pollution investigations and remediation. 

In this book, among other topics, we will focus our attention on the use of 
mathematical modeling techniques in evaluating environmental transformation and 
transport processes. Thus it is important that we discuss problems we may encoun-
ter during model building and application, and the expectations we may have from 
a modeling study in an environmental application. First we should agree that 

4.--, .-........._........t * ... l.a;.,,.,,,.A .hI. p;4z A,,r,I4,, (A('Tc/RIcKI. 31 
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mathematical models cannot help us in the problem recognition stage of an envi-
ronmental pollution problem. However, they are very useful tools in the "gaining 
control" and "finding solutions" stages of our problem solution spectrum. They are 
cost effective and can be easily set up to test "what if" scenarios associated with a 
remedial application or a contamination problem. This cannot be easily studied 
with the other two scientific tools. The downside is the approximate nature of these 
tools which should always be kept in mind when their outcome is utilized. The level 
of contribution of each of these three tools to an analysis throughout the environ-
mental problem solving spectrum is shown in Fig. 2.1. 

Mathematical models are an abstraction of the environmental system and they 
are based on our understanding of the physical principles that govern the system. 
Since models are always going to be an abstraction of a system or a physical 
process, their outcome should always go through a careful and detailed interpreta-
tion stage before the results obtained from a model are determined to be represen-
tative of the behavior of the process or the system modeled (Fig. 2.2). 

The purpose of mathematical model building and modeling is to simulate the 
behavior of the environmental system being modeled. Models are built to represent 
the system behavior in a controlled and cost effective computational environment. 
In this sense, modeling has become a common building block of most scientific 
applications. Using this tool we may observe, analyze, synthesize and rationalize 
the behavior of these systems under controlled conditions, and also we may 
evaluate the performance of the proposed solutions to an environmental problem. 
A common feature of all models is that they are all based on the "concept" of 
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Fig. 2.2 Principles of modeling philosophy 

simplification of the environmental system they are built to represent. This simpli-
fication may be achieved either through reducing the dimensionality of the system, 
elimination of less important processes that govern or affect the system, or through 
the introduction of simplified definitions for the parameters and variables that are 
used to describe the system. All of these or a selected subset of these simplifications 
are always observed in models built to represent an environmental process or an 
environmental system. Before we describe and make use of the models that are 
included in this text and also in the ACTS and RISK computational platforms, it is 
important that we review the modeling terminology from this perspective since ii is 
necessary and extremely important for the reader to understand the limitations of 
models and modeling procedures in general. Otherwise, models or modeling may 
end up becoming a dangerous toot if their output is interpreted as the absolute truth 
without regard to the inherent simplifications and limitations they may have, or 
used as if they represent the environmental system under all circumstances. As a 
rule of thumb, modeling should always be considered to be a cost effective, efficient 
but approximate substitute for observing the modeled system behavior in its natural 
environment. Since observation of a process cannot always be achieved in a timely 
and cost effective manner, the models are here to stay among our scientific arsenal 
of tools as an important and alternative method. 

The three evaluation tools identified above also differ from one another in the 
instruments that they may use to perform the analysis. In this sense, field study tools 
and laboratory tools are more closely related. Both of these methods may use elec-
tronic instrumentation to record and measure macro scale or micro scale processes. 
To provide a systematic procedure, these instruments may be linked to a computer 
or the observations can be done manually. On the other hand, computers are an 
essential component of all mathematical modeling studies. The language used in 
this analysis is primarily the language of mathematics. The interpretation of 
mathematics in the computer is done through coded systems, which nowadays 
can take the form of object or class oriented computer programming languages. 
As a simple definition one can say that a computer program written in any language 
to solve a mathematical problem is an orderly collection of coded instructions to the 
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as software. The ACTS and RISK computational platforms, in this sense, can bi 
identified as software that can be used in the modeling of multimedia environmenta 
transformation and transport problems and health risk analysis. 

Finally, the analysis tools described above should always be used in coordinatior 
with one another. Field studies should support the laboratory studies or vice versa 
and mathematical modeling should support both of these efforts and vice versa. Thc 
advantages of any one tool should be exploited to the utmost for the benefit o 
finding a satisfactory solution to the problem. The outcome of each tool should lx 
checked and verified with the outcome of the other tool. In this sense, these tool., 
should be viewed as complementing, rather than competing scientific methods. 

2.1 Modeling Principles 

Principal steps involved in modeling and the uncertainly and approximationt 
introduced at each step are summarized in Fig. 2.2 in their simplest form. As a 
preliminary definition, one can say that to model is to abstract from the natural 
system a description which addresses a question we have posed for the system. All 
models are developed to answer a specific question about the system outcome. The 
use of models in a specific application cannot and should not go beyond the 
question posed during the model development stage. This is an inherent approxi-
mation and limitation that is involved in all models. After this stage several other 
uncertainties are introduced in model coding and analysis. Some of these uncer-
tainties are associated with mathematical representations used in modeling and 
others are related to the choice of model parameter characterization during imple-
mentation. When the model is used in the simulation phase it may produce a 
significant amount of output. The evaluation of this output is identified as the 
interpretation stage. Thus the overarching goal of mathematical modeling is first 
to come up with an abstract representation of an environmental system and to 
characterize this abstraction in a mathematically consistent manner such that it 
yields easy to use and understandable representations of the outcome, and second to 
use the outcome to interpret the behavior of the modeled system within the bounds 
of the model. Within this sequence, approximations and uncertainties are intro-
duced to the analysis at each stage as shown in Fig. 2,2. 
A common aspect of all mathematical models is that there is an input and an output 

component. Outputs are tied to inputs in some mathematical sense which describes 
the behavior of the abstracted physical problem. Since all models are approximate 
representations of a natural system, they are commonly designed to accept only a 
subset of all possible inputs an environmental system may have. Consequently models 
can only generate a subset of outputs that is expected from an environmental system. 
In other words we can never see the complete output or picture of the modeled system. 
To the extend that the inputs are limited the outputs will be limited as well. 

When completed, models are used in simulation. Simulations are done to 
provide the data necessary in decision making or in evaluating the behavior of 
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the system that is modeled. Decision making is based on simulation results and 
simulations themselves should not be interpreted as decision making. Human 
interaction or other heuristic mathematical models are always necessary in decision 
making which will be based on the outputs obtained from a model. Simulation 
results generated by models only provide us with the pieces of the puzzle that will 
help us make the appropriate decision. Evaluating the behavior of the modeled 
system should also be interpreted the same way. Simulation output only gives us the 

pieces of the puzzle needed to evaluate the system behavior. 
Developing abstracted conceptual systems and a computational code for the 

conceptual systems is the scientific part of the modeling effort which may introduce 
scientific uncertainties (Lemons 1996). Simulation can be identified as the labor 
intensive part. Interpretation of the outcome and decision making can be considered 
to be the artistic part of the overall modeling effort (Fig. 2.2). 

Fallout in modeling is the tendency to model in too much detail rather than 
modeling a finite manageable abstraction. The key to avoid this pitfall is to model 
around a question that needs to be answered rather than shooting for a universal 
representation. A simple model can always be fine tuned (calibrated) to overcome 
the approximations introduced through simplification. As a rule of thumb the 

following are key elements of a successful modeling effort: 

1. Understand the problem and clearly state the question that needs to be 

addressed. 
ii. Evaluate existing models first, do not re-invent the wheel. 

iii. Create a conceptual model that is logical and represents the conceptual 

model in consistent mathematical terms. 
iv. In developing the model involve the user or think like a user. 
v. Simplify the conceptual model, its mathematical interpretation and its user 

interface. This may lead to a trial and error process. Don't be shy of 

remodeling. 
vi. When complete make sure that the model satisfies the objective and 

mission of the effort (see item I). 
vii. Design the simulations such that they provide answers to the question 

posed. Do not expect answers beyond the questions posed. 
viii. Always remember that the purpose of modeling is the knowledge gained 

from a model and not the models themselves. 

2.2 Model Building and Model Types 

in model building the starting point should always be the identification of the goals 
of the modeling study. In this context, the following alternative goals can be cited: 

i. The modeling study is going to be a scientific study in which different 
hypotheses regarding the governing principles of the study will be tested, 
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U 

dominant processes of the problem will be identified, bounds of the parame-
ter ranges that define these processes will be quantified. 

ii. The modeling study will be used to characterize a study area, i.e. to deter-
mine the site specific parameters that are associated with the processes 
included in the model. 

iii. The model will be based on well established basic principles and will be 
used as a predictor either to reconstruct a past event or simulate the future 
behavior of an environmental process at a site. 

iv. The model will be used as an imbedded predictor (slave application) within a 
master application and will be used repeatedly to supply data to the master 

application. Simulators used in optimization models or statistical applica-
tions (Monte Carlo analysis) fall into this category and may include the goals 

identified in item 3. 
v. The model will be used to support engineered decisions that will be made at 
a site and the purpose of modeling is the evaluation of the performance of 
these decisions. 

Given the list of goals stated above, we should expect the following character-
istics to be the dominant features of the model built. In case I the model should be 
considered to be modular. The construction and solution method of the model 
should allow for inclusion or exclusion of certain sub-processes to the model with 
relative ease. Complexity of the model is of no concern in these applications. The 
purpose is to include all possible and important sub-processes into the model. In 
case 2 the model will be used in the inverse modeling sense. In these applications, 
independent parameters of the model are treated as unknowns and dependent 
variables are treated as known variables and the solution process is based on the 
intrinsic relation between the independent and dependent variables. These models 
are not expected to include many independent parameters; otherwise, the solution 

becomes impossible. These models rely heavily on accurate field data on dependent 
variables. In case 3 the model will be used as a predictor. In this case the model 
should include all the dominant sub-processes of the problem studied, independent 
of the availability of accurate definitions of the parameters that are necessary to 
define these sub-processes. During simulation these parameters will be varied 
anyway, and the model output sensitivity with respect to these parameters will be 
documented. In case 4 the model should yield results efficiently with minimal 
computation time. For this to happen one may either resort to closed form solutions 
(analytical) or simplified models that may not include complex sub-processes 
which may exist in the overall system. In this case, as another simplification 
alternative, one may choose to represent complex processes in their simplest 
approximate forms. For example, in contaminant transformation and transport 
analysis one may either choose not to include chemical reactions, that is only 
simulate transport of a conservative chemical behavior, or represent this chemical 
reaction as a first order reaction for a single species application. These are all 
acceptable simplifications for a class of applications. For case 5 the model will be 
used to test the "what if" scenarios with respect to an environmental decision that 
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2.2 Mo&I Building and Model Types 

w ill be made at a site. In this sense, the model should definitely include the best and 
most accurate definition of the sub-process that is being evaluated at the site. 

'Secondary sub-processes that may not influence the main process may be given 
lesser importance in the construction of the model. In all of these cases the 
dimensionality of the model is determined based on the available data and the 
complexity desired by the model builder. Whatever the goal of the modeling study 

is, one always has to recognize that the tool at hand is an approximate representa' 

tion of the process that is being modeled. 
From the perspective of inclusion of some mathematical reasoning into the 

analysis of system behavior, as a general rule, the three procedures discussed 

above are available: (i) physical modeling (laboratory): (ii) empirical modeling 
z (laboratory and field scale); and, (iii) computational modeling. In physical 

modeling the natural system being modeled is duplicated by a scaled model 
which is geometrically and dynamically similar to the large scale system. In this 
case the mathematical processes are used to arrive at similarity laws that are based 
on the similarity of the force ratios which govern the behavior of the natural system. 
Observations are conducted on the scaled model and the results are projected to the 
large scale system, again using the same similarity laws. Mathematical reasoning 
behind empirical models is based on induction supported by the data collected in 
field or laboratory studies. In a sense, the empirical approach represents our 
declaration that the system modeled is very complex, or not fully understood, and 
that the only alternative left for us is to represent the system by the use of a black 
box approach. In some cases, the empirical equations that are developed may even 
end up being dimensionally non-homogeneous, such as the case of the well known 
Manning's equation in open channel flow analysis. This is a further an indication 
that the natural process modeled is not well understood. Sometimes modelers get 

around the issue of dimensional non-homogeneity by attributing dimensions to the 
proportionality constants that are used in the empirical model. This of course may 
lead to a dimensionally homogeneous equation but does not resolve the issue of 
how well we understand the process that is modeled. Some of these models are 
so well established in the technical literature that we do not question their validity, 
such as the Manning's equation used in open channel flow analysis, which is 
sometimes inhibiting. In other cases statistical methods are used to verify the 

predictions made from these models. 
Finally, computational models (mechanistic modeling) are based on deductive 

#: reasoning. Derivation of these models is tied to fundamental principles that govern 
the system. In these models, more often than not, it is impossible to include all 
sub-processes affecting the behavior of a complex system. Thus, as stated earlier, 
these models commonly include simplifying assumptions which should be 
accounted for when they are put to use. In this sense, although these models are 

generic models, i.e. can be used in any large or small scale modeling study, we use 
calibration methods to overcome this deficiency and adjust the model response to a 
site or an application to represent a specific behavior. A classification of mathematical 

models is given in Fig. 2.3. 
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NATURAL SYSTEM 

MATHEMATICAL MODELS 

V 

DETERMINISTIC MODELS 

CONTINUOUS MODELS 

STATIC MODELS 

LINEAR MODELS 

Fig. 2.3 Classification of mathematical models 

STOCHASTIC MODELS 

DISCRETE MODELS 

DYNAMIC MODELS 

NONLINEAR MODELS 

The distinction in this classification is that deterministic models always produce 
the same output for a given input. On the other hand stochastic, a word of Greek 
origin which is synonymous with "randomness" and means "pertaining to chance," 
describes models in which a random set of inputs producing set of outputs that are 
interpreted statistically. Thus, stochastic is often used as the counterpart of the 
modeling exercise which is "deterministic," which means that random phenomena 
are not involved. Continuous models are based on the general mathematical prop-
erty obeyed by mathematical objects and imply expressions in which all elements 
of the objects are within a neighborhood of nearby points. The continuity principle 
applies to dependent as well as independent variables of a mathematical model and 
implies smoothly varying properties, i.e. at least continuous first derivatives. Their 
counterpart is discrete models in which mathematical objects are not continuous 
and abrupt variation of parameters is expected. Static and dynamic refer to the 
dependence of the model on the independent variable "time". Static models are 
time independent and dynamic models are time dependent. Mathematical models 
that satisfy both the principles of additivity and homogeneity are considered to be 
linear models. These two rules, the additivity and homogeneity - taken together, 
lead to the possibility of the use of the principle of superposition. Nonlinear models 
are mathematical systems in which the behavior of the system is not expressible as 
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-Mathematical model building is a complex process. However, a systematic path 

to successful model building can be defined and this path should be followed 
• to avoid common mistakes that may render the overall effort fruitless. Following 
the commonly accepted principles, a model building path is given in Fig. 2.4. 
Tie modeling framework, as identified in Fig. 2.4, includes standard checks and 
• balances that should be used in model building, no matter what the purpose of the 
model may be. Remodeling is always an integral path of this process to improve on 

what is being built. 

2.3 Model Calibration, Validation, Verification 
i and Sensitivity Analysis 

Since all models are simplifications of a complex system they need to be calibrated 
and verified before they are used in simulation. Validation and sensitivity analysis 
of models is also another concept that needs to be addressed and clarified. The 
literature on the definition and use of these concepts is abundant and sometimes 
confusing. Most of the confusion is associated with the concept of validation of 
models (Gentil and Blake 1981: Tsang 1991: Mayer and Butler 1993: Power 1993; 
Oreskes ci al. 1994a, b: Rykiel 1996). For example validation is sometimes 
considered essential (Power 1993) and sometimes validation of models is consi-

dered impossible (Siarlield and Bleloch 1986; Oreskes ci al. 1994a, b), and some 
technicians of this field indicate that models can only be invalidated (Holling 1978; 
McCarl 1984). Due to this confusion and conflicting definitions it is appropriate to 
review the meaning of these terms as well as the interpretation of the very important 
terms "calibration" and "sensitivity analysis" from a mathematical modeling per-
spective. 

Model Calibration: Models include parameters and constants that need to be 
associated with values. These parameters are used as input to the mathematical 
models to produce numerical output. Ideally, these parameters should have a good 
definition and a physical basis for the environmental system studied. Usually these 
parameters either are calculated using the mathematical representation of this 
physical basis, or they are measured in field or laboratory studies. More often 
than not, however, the values of these parameters are unknown or only known 
approximately. Thus a range of these parameters can be input to a model to yield the 
best outcome when compared to an observation made in a field or laboratory study. 
Thus, appropriate values of the parameters are needed in the model to achieve the 
appropriate output that is observed at a site. Calibration of a model can then be 
identified as the stage where we adjust the parameters of the mathematical model 
such that the model agreement is maximized with respect to the observation data 
we have on the modeled system. In this sense, model calibration is fine tuning the 
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model to a set of data on the natural system. Calibration of a model can be done 
manuallY, i.e. by trial and error adjustment of model parameters or it can be 
automated using stochastic procedures. Success in calibration, or lack of it, may 
yield information on 110w reasonable the modeler was in conceptualizing the natural 
system and mathematical representation of the conceptualized system. If a model 
fails to calibrate, it may mean that the conceptualization and mathematical repre-
sentation stages need to be revisited. This also emphasizes the importance of 
remodeling in model development (Fig. 2.4). Calibration should not be interpreted 
as an inverse modeling technique which is used in parameter identification pro-
blems. Calibration procedure basically readies a model for its further use in 

simulation. 
• Model Verification: The confusion pointed out earlier may originate from the 
way we use the words 'verify' and 'validate'. In ordinary language, they are 
synonymous. From the perspective of modeling terminology these two words are 

• used to describe two distinct concepts. Verification is a demonstration that the 
modeling formalism is correct. There are two types of verification avenues in 
modeling: (i) mechanical; and, (ii) logical. The former is associated with the 

• debugging process of a computer program and in mathematical models, which 
shows that the mathematics and their numeric calculations are mechanically 
correct. A more important and difficult verification issue is the latter: showing 
that the program logic is correct. Some logical errors in a model may only appear 
under special circumstances that may not routinely occur in an application. Thus, 
these errors may not be recognized in routine applications of the model. Verifica-
tion is thus a technical matter that identifies how faithfully and accurately ideas are 
translated into a computer code or mathematical formalisms (Law and Kelton 
1991). In the case of large (complex) models, it is extremely difficult to verify 
that the model is entirely accurate and error free under all circumstances. Models 
are thus generally verified for the normal circumstances in which they are 
expected to be applied, and such verification is presumed inapplicable if the 
model is run outside this range. It is important to distinguish verification logic 
which relates to program operation from conceptual model logic which refers to the 
ecological logic used in structuring the model. Verification of models is needed in 

both aspects. 
In summary, verification of a model is the stage at which we quantify the 

predictive capability of a mathematical model. This may be accomplished through 
a comparison of the output obtained from a model, which is based on input data, or 
with a set of observation data we have on a natural system which is based on the 

It same input data. It is important to note that the observation data used in the 
' calibration stage should be distinctly different from the data set used in the verifi-

cation stage. That is, the data used for verification should be such that the calibra-
tion parameters should be fully independent of the verification data. The verified 
model can then be used for forecasting. 

Model Validation: The absolute validity of a model can never be determined 
(NRC 1990). This statement is a strong reference to the impossibility of validation 
of a model. This reference to the impossibility of validation of models is somewhat 
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relaxed in a statement in which Hoover and Perry state that: "The computer model 
is verified by showing that the computer program is a correct implementation of the 
logic of the model. Verifying the computer model is quite different from showing 
that the computer model is a valid representation of the real system and that verified 
model does not guarantee a valid model" (Hoover and Perry 1989), which implies 
that "validity" of a model is a possibility. To clear this confusion we need to expand 
on these definitions. 

The term model uncertainty which is linked to model validation is used to 
represent lack of confidence that the mathematical model is a "correct" formulation 
of the problem solved. Model uncertainly exists if the model produces an incorrect 
result even if we input the exact values for all of the model parameters. The best 
method for assessing model uncertainties is through model validation (Hoffman 
and Hammonds 1994), a process in which the model predictions are compared to 
numerous independent data sets obtained. Thus, as is the case with verification, 
validation is better understood as a process that results in an explicit statement 
about the behavior of a model. A common definition of validation can be the 
demonstration that a model, within its domain of applicability, possesses satisfac-
tory accuracy consistent with the intended application of the model (Sargent 1984; 
Curry et al. 1989). This demonstration indicates that the model is acceptable for 
use. But that does not imply that it represents the absolute truth for the system 
modeled, nor even that it is the best model available. For operational validation, this 
demonstration involves a comparison of simulated data with data obtained by 
observation and measurement of the real system. Such a test cannot demonstrate 
the logical validity of the model's scientific content (Oreskes et al. 1994b). Valida-
tion only demonstrates that a model meets some specified performance standard 
under specified conditions. It is often overlooked that the "specified conditions" 
include all implicit and explicit assumptions about the real system the model 
represents as well as the environmental context it covers. That is, that a model is 
declared validated only within a specific context, is an integral part of the certifica-
tion. If the context changes, the model must be re-validated; however, that does not 
invalidate the model for the context in which it was originally validated (Rykiel 
1996). Validation is a "yes" or "no" proposition in the sense that a model does or 
does not meet the specified validation criteria. These criteria may include require-
ments for statistical properties (goodness-of-fit) of the data generated by the model, 
and thus are not necessarily deterministic. Ambiguous situations may develop when 
the model meets some but not all of the criteria. The criteria may need to be 
prioritized, and the model may be validated with respect to these priorities. Because 
modeling is an iterative process, validation criteria may evolve along with the 
model. This is more typically the case with scientific research models than with 
engineering models. From a technical perspective, a valid model is the one whose 
scientific or conceptual content is acceptable for its purpose. 

Sensitivity Analysis: Sensitivity analysis, on the other hand, can be considered 
to be a component of simulation through which the modeler evaluates the response 
of the model to changes in input parameters or boundary conditions of the model. 
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Sensitivity of model response to the input data and parameters of the model and 
the model output obtained is critical and must be quantified both during calibration 
and verification stages. Through this process, discrepancies between the model 
output and observation must be minimized to the extent that is possible by identify-
jhg and minimizing sources of error. These error sources include measurement 

efrors, conceptual error in model development and approximation errors that may 
11:xist in mathematical representations. The goal of sensitivity analysis is to estimate 
t1c rate of change in the output of a model with respect to changes in model inputs 
or parameters. This knowledge is important for: 

I. Evaluating the applicability range of the model developed; 
ii. Determining parameters for which it is important to have more accurate 

i. values; and, 
iii. Understanding the behavior of the system being modeled at critical points of 

; solution - possibly at singular points. 

The choice of the method of sensitivity analysis depends on: 

I. The sensitivity measure employed; 
ii. The desired accuracy in the estimates of the sensitivity measure; and 

iii. The computational cost involved in calculating the error. 

Consider a contaminant transport model in which several parameters Pi charac-
terize the contaminant concentration C as a continuous function in a linear mathe-

matical function, C —f(Pi,Pa,P3..... P5) from which some reference value of C 
can be calculated, Co —f(P',P',P°3,...,P). For this case some of the more 

common sensitivity measures Sj, which can be used, are: 

Local gradient measure: 

Normalized gradient measure: 

Normalized variance measure: 

Expected value measure: 

Extreme value measure: 

Normalized response measure: 

Average response measure: 

tic' 
-- till 

tic, P 
S11 till C 

- OCi std(P3}  
S,j - 3P. std{Cì} 

S!i = C1[E(P1) 

= {max c, () , min c () } 
s,, = (c11 - 

5,, 

(2.1) 

where E is the expected value measure and the expected value of P is the mean 

value of parameters P. 
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Based on the choice of the sensitivity measure and the variation in the mc 
parameters, methods of sensitivity analysis can be broad!y classified into one of 
following categories: 

i. Variation in parameters or model formulation: In ibis approach, the mode 
run for a set of sample points (different combinations of parameters 
concern) or with straightforward changes in model structure (e.g., 
model resolution). Sensitivity measures that are appropriate for this type 
analysis include the response from arbitrary parameter variation, norrnaliz 
response and extreme value measure. Of these measures, the extreme valu 
are often of critical importance in environmental applications. 

ii. Sensitivity analysis over the solution domain: In this case the sensitivi 
involves the study of the system behavior over the entire range of paramet 
variation, often taking the uncertainty in the parameter estimates into accoui 

iii. Local sensitivity analysis: in this case the model sensitivity to input ar 
parameter variation in the vicinity of a sample point(s) is evaluated. Th 
sensitivity is often characterized through gradient measures. 

The discussion of the terms calibration, verification, validation and sensitivit 
analysis given above outlines the basic principles involved in any modeling an 
model development effort. There are numerous models that are available in lb 
scientific literature which may be used to analyze a multitude of physical processes 
These models are sometimes identified as off-the-shelf models from which the user 
may download a code and implement it in a specific application that is of interest t( 
the user. Here, ills important to note that the user must be fully aware of th 
limitations and the application range of the model used for the intended purpose. Jr 
certain cases some of these models have become so common in the literature that 
we no longer truly check the application rage of the model downloaded and we do 
not verify if the model truly fits the physical problem being modeled. In certain 
cases there are model applications in which the physical system modeled is 
restricted just to fit the system into a readily available off-the-shelf model. This 
practice can be characterized as fitting a physical system to a model rather than 
fitting a model to a physical system. This approach in modeling should be avoided 

at all times, at all cost. One should never try to define a physical system based on the 
limitations of the model that may be readily available. One should always remem-
ber the hierarchical steps involved in modeling. The description of the physical 
system always comes first, while the development of the model to describe the 
system follows behind. 

2.4 Model Scales, Error and Uncertainty 

The term "scale" refers to the characteristic spatial or temporal dimensions at which 
entities, patterns, and processes can be observed and characterized to capture 
the important features of an environmental process. Borrowing from cartography 
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ccepts, as environmental modelers we define scale as having two components: 
grain and extent. The former corresponds to the smallest spatial and temporal 
sampling units used to gather a series of observations or perform a computation. 
Extent is the total area or time frame over which observations or computations 

related to a particular grain are made (O'Neill and King 1998). For example, this 
may be defined for an observation of a hydrologic process, or it may be defined for a 
modeled environment (Klemes 1983; Bloschl and Sivapalan 1995; Singh 1995). All 
environmental processes, large-scale or small-scale, have their own characteristic 
sCales of reference, which are necessary to capture details of the processes modeled 
;orobserved. Independent of the size of the model used, all environmental models, 

as covered in this book, are based on some mathematical representation of a 
physical process which is scale dependent (Gupta et al. 1986). When analysts use 
large-Scale models to predict small-scale events, or when small-scale models are 
used to predict large-scale events, problems may arise (Fig. 2.1). 

From groundwater flow and contaminant transport models to flow and transport in 

river channel networks to overland flow in a watershed or air shed models, the 
environmental processes occur over a wide range of scales and may an about ten 
orders of magnitude in space and time. When we attempt to model an integrated 
system the first question one should ask is: "if it is necessary to link all components of 
the environmental cycle into one system model?" The answer to that question should 
not be based on whether these components are separable or not. In a global sense they 
are not. However, the answer to that question should be based on whether one wants 
to separate them or not depending on the goals of the project and the importance of 
the contribution of the sub-processes to the understanding and evaluation of that goal. 

For example, if one is not interested in observing or reflecting the effect of one 
subcomponent on the other, then one can easily isolate an environmental process and 
analyze that subcomponent alone. For example, there are numerous groundwater flow 
and contaminant transport models which are extensively used in the literature just 
to study groundwater systems (McDonald and Harbaugh 1988; Aral 1990a, b). In 
their analysis, groundwater would receive input from surface water, but the reverse 
influence cannot be considered. On the other hand, if the simulation of multipathway 
interaction of an environmental process is the goal, than an integrated systems 
modeling approach is a must, and therein one encounters the difficulties of integration 

over scales (Gunduz and Aral 2005). 
The transfer of data or information across scales, or linking sub-process models 

through a unified scale, is referred to in the literature as "scaling." Up-scaling 
consists of taking information from smaller scales to derive processes at larger 
scales, while downscaling consists of decomposing information at one scale into its 
constituents at smaller scales (Jarvis 1995). In the context of absolute space and 

time, scaling primarily involves a change in the geometric and temporal structure 
of the data and their corresponding attributes. In using the term "absolute scale" 
here we are referring to the definitions used in an Eulerian coordinate system in 
which distances between points in time and space are well defined geometric and 
differential entities. Thus, linking sub-process parameters within the well defined 
rules can be considered to be objective and to be independent of one's viewpoint or 
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frame of reference in solving a problem. From a relative perspective, scaling 
becomes a more complex task than it would be in an absolute framework. In a 
relative scale framework one focuses on the sub-environmental processes and 
defines space and time as a measure of the relationship between these sub-processes. 
In a way one can interpret this definition as a Lagrangian frame of reference. 

The relative scales concept represents the transcending concepts that link pro-
cesses at different levels of space and time. It entails a change in scale that identifies 
major factors operational on a given scale of observation, their congruency with 
those on lower and higher scales, and the constraints and feedbacks on those factors 
(Caldwell ci al. 1993). With this definition, one can observe that two processes that 
occur in close proximity by the definition of an absolute scale may be very distant 
from one another in terms of a relative scale sense. An example could be the case of 
the two hydrologic processes, overland flow and saturated groundwater flow, that 
normally are separated by an unsaturated zone. These two hydrologic processes 
could be close to each other in an absolute sense, but in terms of their interaction 
with one another, they could be very distant in a relative space and time frame of 
reference, due to limiting transfer rates that may exist in the unsaturated zone. In 
such cases, when scaling is considered the relative frame of reference should take 
precedence. 

As expressed by Jarvis (1995), what makes scaling a real challenge is the non-
linearity between processes and variables scaled, and the heterogeneity in the 
properties that determine the rates of processes in a relative frame of reference. 
Therefore, it is important to realize that scaling requires an understanding of the 
complex hierarchical organization of the geographic and temporal worlds in which 
different patterns and processes are linked to specific scales of observation, and in 

which transitions across scales are based on geographically and temporarily mean-
ingful rules (Marceau 1999). 

Scaling and its effects on environmental modeling are commonly linked to the 
heterogeneity of the system modeled. However, this link should also include the 
refinement necessary to resolve the mathematical nonlinearities incorporated into an 
environmental process. Scale differences necessary to resolve nonlinearities, such as 
the nonlinearities introduced by the dependence of the higher order chemical reac-
tion terms on rate constants as opposed to the easily solved differential equation that 
accompanies the first order reaction rates can be given as an example. Thus nonline-
arity and heterogeneity are the two important factors that need to be considered in 
scaling. The greater the degree of heterogeneity and nonlinearity, the smaller the 
scale one would have to use to represent such variability or resolve such nonlinearity. 

The other component of scaling effect arises in the interpretation of field data. 
Integrated environmental models use a variety of parameters to represent the 
characteristics of an application domain. However, data on large scale domain 
parameters are often limited. The task is then to transform this spatially limited 

data to a scale which can be used as an input in large scale applications. The 
question to answer here is what scale one should use to represent this data without 
losing accuracy during the extrapolation process. As the spatial scale of the model 
increases from a small area to a large area, the extrapolation of limited spatial data 
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to alarge scale system would introduce errors in the analysis from the start, which 

should be avoided. 
.An optimum scale of an integrated model should then reflect the "functional 

sdalc" (Aral and Ounduz 2003), that provides a compromise between the resolution 
of nonlinearities of the mathematical model, availability and extrapolation 
of-data and the heterogeneity of the system. Thus, in environmental modeling, 
in order to resolve scale and scaling problems, one should first attempt to answer 

the following fundamental questions: 

i. What is the appropriate scale of study for a particular hydrologic sub-process 

in the study? 
ii. How close these sub-processes are in a relative frame of reference? 

'4 iii. How can one accurately transfer the necessary information from one process 
scale to another for closure? 

When answering these questions we end up with a so called compromised scale 
which we identify as the functional scale (Aral and Gunduz 2003). 

•. Scales of Sub-processes: Different scales of space and time govern the flow and 
transport  phenomena in the environmental cycle. For an integrated environmental 
model these scales vary by several orders of magnitude in terms of the idealization 
of the solution domain, the computational step size and the simulation extent that is 
necessary to capture the important aspects of the process modeled as well as the 
proper scales that are necessary to interpret the input data. 

One important aspect of integrating various sub-processes is the selection of the 
method applied to solve the equations that define the system. In this regard, 
coupling via iterative solution and coupling via simultaneous solution are the 
most advanced levels of solving the sub-processes in an integrated fashion. In 
iterative solutions, each sub-process model is solved separately and integrated 
sequentially by using the contributions from the other sub-processes. When each 
sub-model is solved, the common parameters linking these systems are checked for 
convergence (i.e., deviation from the previous solution). If the solutions of these 
common parameters are not sufficiently close, the solution procedure is repeated 
'until the differences between subsequent solutions are below a pre-determined 
convergence criteria. This iterative coupling approach is slow, especially when 
more than two sub-processes are linked together. On the other hand this approach 
would be less restrictive from the perspective of scaling concerns since each sub-
process can be analyzed within its own scale. 

In the simultaneous solution approach, all sub-process models are solved 
together using a common idealization scale and a common time step. In this 

approach all sub-model solution matrices are grouped in a single matrix structure 
and solved at once. Hence, this method requires the use of the smallest idealizations 
and smallest time step of all sub-models, which may be impractical for the coupling 
processes requiring idealization and time steps from the two extremes. For example 

linking the two processes such of saturated groundwater flow and transport and the 
unsaturated groundwater flow and transport falls into category. Attempting to solve 
such a system simultaneously results in small idealization scales and time steps and 
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creates incompatibility between systems. For example, unsaturated flow requires 
small time steps in the order of seconds to describe the vertical movement of 
moisture in the unsaturated domain whereas the groundwater flow can be run 
with time steps in the order of days. If a simultaneous solution technique is used 
to couple these two systems, then the entire system would need to be run with the 
time step of the unsaturated zone. This condition is computationally costly and 
inefficient for the groundwater flow and contaminant transport simulations. On the 
other hand, this approach is more accurate than the iterative method since it does 
not involve improvement of the solution by iterating on the common parameters 
of the two sub-models (Gunduz and Aral 2003a, b, c, d). Thus the wide array of 
time scales required to simulate efficiently the flow and transport processes in 
the environment is the most important problem of environmental modeling. The 
incompatibility of the sub-process time scales makes the overall coupling of 
the system difficult and sometimes impractical. 

Suggested Solutions to Scaling Problems in Integrated Environmental Model-
ing: In large scale environmental modeling, the scale issues and up-scaling or 
down-scaling difficulties outlined above must be resolved if we are to develop an 
integrated representation of these processes. Technicians in the field of modeling 

believe that these problems can be resolved through some compromises. In order to 
develop an order of importance list of compromises that can be considered, the 
modeler has to introduce concepts such as: 

i. Order of importance; 
ii. Domain of importance; 

iii. Functional scales; and, 
iv. Hybrid modeling concepts. 

In an integrated modeling effort, the order of importance ranking of different 
sub-processes can be achieved by the analysis of the data associated with the 
environment under study. For example in an environment where the groundwater 
table is high and the unsaturated flow zone thickness is very small, it may not be a 
significant loss of accuracy if the unsaturated zone is not modeled as a distributed 
model but instead is represented in terms of lump parameter models. Similar order 

of importance analysis evaluation can be made for overland flow as well as for the 
contaminant transport modeling. In and regions or for rainfall events which are not 
significant, the contribution of this component may also be represented in terms of 
lumped parameter models rather than distributed parameter models. However, in all 
cases the groundwater flow zone and the river channel flow zone will play an 
important role in the overall watershed hydrology and should be included in the 
analysis in terms of distributed models for improved accuracy of representation of 
these sub-processes in the integrated environmental model. 

The domain of importance concept arises from the analysis of the type of the 
problem solved. For example, if the concern is the transport of a certain contami-
nant source in the watershed, and if this source is not located in the unsaturated 
zone, then modeling the hydrologic processes in the unsaturated zone in detail with 
the use of distributed models may not be necessary. Similarly, if it is known that the 
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2.4 Model Scales, Error and Uncertainty 

aturated and the saturated zones is negligible, there is 
flux of water between the uns  
no need to complicate the analysis by including the unsaturated zone. On the 
àontrarY, there may not be any need to model the saturated groundwater flow 

'when the top few meters of the soil column are of concern to the modeler and the 
groundwater table is at a much deeper elevation. Such simplifying judgments are a 

d1rect 0flseqUeflce of the available data for the domain modeled and are essential 
cornp0fl'5 of engineering evaluations to be made in a modeling study. 

ept is associated with the limitations of the integrated The functional scales conc  
domain scales. If all sub processes are important in an integrated environmental 

r m odeling effort and the use of distributed models is the goal, then one has to 
analyze the final time and space scales that are necessary to combine these models 
in an integrated system. At that point one may clearly see that this is not possible 

,r given the computational difficulties or long computation times required to solve 
..' the system. In such cases a compromise, as described earlier, is again the only 

solution. 
Data availability is another limit ing aspect of the integrated large scale environ-

mental modeling studies. More often than not, field data is not available to justify 
el at a large scale. This may be observed at a sub-

the use of a distributed mod to force a distributed 
process scale, in which case there is no reason  model 
application for that sub-process as well. Otherwise, unforeseen errors will be 

to the modeling effort. The availability of the alternative models, introduced  
simplified to more detailed system representations, or from 

w hich range from simpli  
models, aids in evaluating the applicability of the low small scale to large scale  

resolution models. If the results of the low resolution models (either in detail or in 
scale complexity) agree closely with those of the high resolution models, then the 
low resolution models are preferable, since they typically require lower computa-

tional resources and lesser input data. 
Given the limitations on computational resources, computational methods and 

data limitations, the outcome of the integrated modeling comprOmises as discussed 
above, is clearly to direct the modeler towards the use of hybrid models in 
integrated environmental modeling. In these models, lumped parameter models 
are used along with distributed parameter models to develop an integrated system. 

Uncertainty and Error: The discussion above leads to uncertainty and error 
associated with environmental models and modeling (Figs. 2.2 and 2.5). Uncer-
tainty in transformation and transport models arises in the following two stages of 
modeling: (i) model conceptualization or model building; and, (ii) model applica-
tion. As mentioned above, model building uncertainty arises under several condi-

tions, including the following: 

i. When alternative sets of scientific or technical assumptions for developing a 

model exist (model structure); 
ii. When models are simplified for purposes of tractability (model detail - 

inclusion or exclusion of sub-processes), and, 
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Conceptualization Uncertainty [ Model Structure Uncertainty 
6• 

Prediction Uncertainty 

Model Scale Uncertainly 

Fig. 2.5 Uncertainty sources in modeling 

iii. When a coarse discretization and of data is used to reduce the computation 
demands of the model (model resolution - scale issues and statistical 
uncertainty). 

The uncertainties and errors in simulation may arise from uncertainty in model 
inputs or parameters (i.e., parametric or data uncertainty). When a model applica-
tion involves both model and data uncertainties, it is important to identify the 
relative magnitudes of the uncertainties associated with data and model formula-
tion. Such a comparison is useful for focusing resources where they are most 
appropriate (e.g., data gaps versus model refinement). 

Uncertainties in model parameter estimates may stem from a variety of sources. 
Even though many parameters could be measured or calculated up to some degree 
of precision, there are often significant uncertainties associated with their estimates. 
Some uncertainties and errors can be identified as: 

I. Random errors in analytic devices used in field and laboratory measurements; 
ii. Systematic biases that occur due to imprecise calibration; 

iii. Extrapolation of data from one scale to another, and, 
iv. Inaccuracy in the assumptions used to infer the actual quantity of interest 

from observations of a "surrogate" parameter or estimation of parameters 
based on mildly representative samples. 

Uncertainty analysis should not be confused with sensitivity analysis. In uncer-
tainty analysis one attempts to describe the entire set of possible outcomes of a 
model together with their associated probabilities of occurrence. In sensitivity 
analysis one determines the relative change in model output given changes in 
model input values. 

Model errors can be evaluated by analyzing the variation in dependent variables 
in the model based on the variation of the independent variables of the model, i.e. 

the parameters of the model. Taylor series analysis is commonly used in this 
analysis. Since Taylor series will be used in several different contexts in this 
book it is appropriate to introduce a review of this topic. 

A Taylor series is the sum of functions composed of continually increasing 
derivatives. For a dependent variable such as contaminant concentration C(P), 
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which depends on only one independent parameter?. the value of the function C(P) 
it points near P, can be approximated by the following Taylor series, 

(P0+ AP) C(P.)+jT() +i(dp2) )3( )  

+ _!i fd"C\l +...  ii! t7) + R +1 
(2.2) 

in which P, is some reference value of the parameter P. AP is the increment in the 
parameter P and (P + P) identities the point where the concentration C is to be 

R,,•, represents the remainder terms of a Taylor series evaluated C(P0 + AP) and  
expansion. In Eq. (2.2) the derivatives of C(P) are evaluated at Pt,. Using the 

definition above a first order approximation can be defined by keeping the terms 
of the Taylor series up to and including the first derivative as follows. 

C(P(, + AP) C(P0) + AP 

Similarly, the second and third order approximations to Taylor series are given by 

and 

(AP)2 (d 2C\ I 
C(P,,+ AP) C(P(,) + A? () L.  + '0 2  

Idc\ (A?)2 (d 2C'\ 
C(P,, + AP) C(P,) + AP I¼) + -ir 

(2.3) 

(2.4) 

(2.5) 

cries approximation improves as the order 
respectively. The accuracy of a Taylor s  
of the Taylor series increasesaS shown in Eqs. (2.3) through (2.5). In these equations 
an approximate relationship is implied since the remainder terms of the Taylor 

Series are omitted. Referring back to Eq. (2.3), we can associate the point P, with 
the mean value of the parameter distribution P. Accordingly, the Eq. (2.3) will 
represent the value of C(a space is needed here such as) C around the mean value 
of P. We can now write an equation for the variance of the concentration C, using 

the definition of variance of C(P) about the mean P,,, S2(C(P0)). 

dC\ 2 
S- (C(P)) = S- (P) 

(2.6) 
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where S(P) is the sample standard deviation, and 52(P) is the sample variance 
around the mean P. Eq. (2.6) implies that the variance in the dependent variable 
(uncertainty) is a function of the variance (uncertainty) in the parameter P. the 
sensitivity of the dependent variable to the changes in the parameter P around its 

OC 
mean, ()2j,,, and the variance in the parameters S2(P). 

For a multivariate relationship, C(P1), I = 1,2,3, ..., n the first order Taylor 
series expansion, Eq. (2.3), can be written as, 

c(P -t- & " ,p + ip2,p + p3, ... ,p + tIP") 

'I 

C(P,P02 P3 
O"1 

i.I 

which yields the variance relation, 

lacY 
1=1 

+2 (ÔC\ bc 
j=P i'j+I 

(2.7) 

(2.8) 

where P, is the mean of the ith parameter, s(P,) and S2(P,) are the standard 
deviation and the variance of the ith parameter around its mean respectively, 
S2(C(P,)) is the variance of c(pi) around the means P,, 'b(P,, P,) is the correla-
tion coefficient in a linear least squares regression between the parameters?' and N 
(Crow et at. 1960; Reckhow and Chapra 1983; Bogen and Spear 1987; Ayyub and 
McCuen 1997; Conover 1999). 

Monte Carlo analysis is another method used to evaluate parameter sensitivity to 
solution. Since this approach is used extensively in the ACTS and RISK software 
we will review this topic in more detail in Chapter 7. 

2.5 Methods of Solution 

Some mathematical models are relatively simple and their solution can be achieved 
using analytical methods, sometimes referred to as a closed form solution. Numeri-
cal calculation based on an analytical solution can be exact or approximate. Its 
accuracy depends on the complexity of the analytical solution. More complex 
models may require numerical solution which are all inherently approximate solu-

tions to the problem. Both solutions will require computer based calculations to 
relate the model inputs to model outputs. 

As indicated above statistical models and statistical calculations are also a 
necessary component of a modeling exercise. If not explicitly used in the modeling 
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Referefl5 
itself, statistical methods will become an important component in the sensitivity, 
calibration and verification phases of the modeling exercise. 

In the case of the ACTS and RISK software analytical solutions will commonly 
employed' since the models included in these software platforms are considered 

as screening models and in that sense are simpler representations of the modeled 
system. To perform sensitivity analysis the ACTS and RISK software also includes 

- a Monte Carlo module in all models where the models can be run in a stochastic 

mode. 

-'C 

it 
At 

2.6 Modeling Terminology 

The modeling field is quite a diverse field of science. It is important for the 
professionals working in the environmental health field to familiarize themselves 
with various concepts and methods employed in this field 10 be able to understand 

the outcomes and limitations of environmental modeling and use them in environ-
mental health analysis appropriately. For this purpose a review of the following 
references are recommended, (Gentil and Blake 1981; USEPA 1984; Starfield and 
Bleloch 1986; Hoover and Perry 1989; Law and Kelton 1991; Tsang 1991; Mayer 
and Butler 1993; Oreskes et at. 1994b; Lemons 1996; Schnoor 1996; Abdel-Magid 

et al. 1997; Saltelli ci at. 2000; Anderson and Bates 2001; Nirmalakhandafl 2002: 
Aral and Gunduz 2003). The acronyms used in this field are given in Appendix A of 
this book. The list of terms and their definitions given in Appendix B are also 
included in this book to familiarize the reader with the terminology used in the 

environmental modeling field as a starling point. 

r4. 
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